Geant4  10.02
G4INCLNuclearPotentialIsospin.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // INCL++ intra-nuclear cascade model
27 // Alain Boudard, CEA-Saclay, France
28 // Joseph Cugnon, University of Liege, Belgium
29 // Jean-Christophe David, CEA-Saclay, France
30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31 // Sylvie Leray, CEA-Saclay, France
32 // Davide Mancusi, CEA-Saclay, France
33 //
34 #define INCLXX_IN_GEANT4_MODE 1
35 
36 #include "globals.hh"
37 
49 #include "G4INCLParticleTable.hh"
50 #include "G4INCLGlobals.hh"
51 
52 namespace G4INCL {
53 
54  namespace NuclearPotential {
55 
56  // Constructors
58  : INuclearPotential(A, Z, aPionPotential)
59  {
60  initialize();
61  }
62 
63  // Destructor
65 
67  const G4double ZOverA = ((G4double) theZ) / ((G4double) theA);
68 
71 
72  const G4double theFermiMomentum = ParticleTable::getFermiMomentum(theA,theZ);
73 
74  fermiMomentum[Proton] = theFermiMomentum * Math::pow13(2.*ZOverA);
75  const G4double theProtonFermiEnergy = std::sqrt(fermiMomentum[Proton]*fermiMomentum[Proton] + mp*mp) - mp;
76  fermiEnergy[Proton] = theProtonFermiEnergy;
77  // Use separation energies from the ParticleTable
78  const G4double theProtonSeparationEnergy = ParticleTable::getSeparationEnergy(Proton,theA,theZ);
79  separationEnergy[Proton] = theProtonSeparationEnergy;
80  vProton = theProtonFermiEnergy + theProtonSeparationEnergy;
81 
82  fermiMomentum[Neutron] = theFermiMomentum * Math::pow13(2.*(1.-ZOverA));
83  const G4double theNeutronFermiEnergy = std::sqrt(fermiMomentum[Neutron]*fermiMomentum[Neutron] + mn*mn) - mn;
84  fermiEnergy[Neutron] = theNeutronFermiEnergy;
85  // Use separation energies from the ParticleTable
86  const G4double theNeutronSeparationEnergy = ParticleTable::getSeparationEnergy(Neutron,theA,theZ);
87  separationEnergy[Neutron] = theNeutronSeparationEnergy;
88  vNeutron = theNeutronFermiEnergy + theNeutronSeparationEnergy;
89 
90  const G4double separationEnergyDeltaPlusPlus = 2.*theProtonSeparationEnergy - theNeutronSeparationEnergy;
91  separationEnergy[DeltaPlusPlus] = separationEnergyDeltaPlusPlus;
92  separationEnergy[DeltaPlus] = theProtonSeparationEnergy;
93  separationEnergy[DeltaZero] = theNeutronSeparationEnergy;
94  const G4double separationEnergyDeltaMinus = 2.*theNeutronSeparationEnergy - theProtonSeparationEnergy;
95  separationEnergy[DeltaMinus] = separationEnergyDeltaMinus;
96 
97  const G4double tinyMargin = 1E-7;
100  vDeltaPlusPlus = std::max(separationEnergyDeltaPlusPlus + tinyMargin, 2.*vDeltaPlus - vDeltaZero);
101  vDeltaMinus = std::max(separationEnergyDeltaMinus + tinyMargin, 2.*vDeltaZero - vDeltaPlus);
102 
103  separationEnergy[PiPlus] = theProtonSeparationEnergy - theNeutronSeparationEnergy;
104  separationEnergy[PiZero] = 0.;
105  separationEnergy[PiMinus] = theNeutronSeparationEnergy - theProtonSeparationEnergy;
106 
108  fermiEnergy[DeltaPlus] = vDeltaPlus - separationEnergy[DeltaPlus];
109  fermiEnergy[DeltaZero] = vDeltaZero - separationEnergy[DeltaZero];
110  fermiEnergy[DeltaMinus] = vDeltaMinus - separationEnergy[DeltaMinus];
111 
112  INCL_DEBUG("Table of separation energies [MeV] for A=" << theA << ", Z=" << theZ << ":" << '\n'
113  << " proton: " << separationEnergy[Proton] << '\n'
114  << " neutron: " << separationEnergy[Neutron] << '\n'
115  << " delta++: " << separationEnergy[DeltaPlusPlus] << '\n'
116  << " delta+: " << separationEnergy[DeltaPlus] << '\n'
117  << " delta0: " << separationEnergy[DeltaZero] << '\n'
118  << " delta-: " << separationEnergy[DeltaMinus] << '\n'
119  << " pi+: " << separationEnergy[PiPlus] << '\n'
120  << " pi0: " << separationEnergy[PiZero] << '\n'
121  << " pi-: " << separationEnergy[PiMinus] << '\n'
122  );
123 
124  INCL_DEBUG("Table of Fermi energies [MeV] for A=" << theA << ", Z=" << theZ << ":" << '\n'
125  << " proton: " << fermiEnergy[Proton] << '\n'
126  << " neutron: " << fermiEnergy[Neutron] << '\n'
127  << " delta++: " << fermiEnergy[DeltaPlusPlus] << '\n'
128  << " delta+: " << fermiEnergy[DeltaPlus] << '\n'
129  << " delta0: " << fermiEnergy[DeltaZero] << '\n'
130  << " delta-: " << fermiEnergy[DeltaMinus] << '\n'
131  );
132 
133  INCL_DEBUG("Table of Fermi momenta [MeV/c] for A=" << theA << ", Z=" << theZ << ":" << '\n'
134  << " proton: " << fermiMomentum[Proton] << '\n'
135  << " neutron: " << fermiMomentum[Neutron] << '\n'
136  );
137  }
138 
140 
141  switch( particle->getType() )
142  {
143  case Proton:
144  return vProton;
145  break;
146  case Neutron:
147  return vNeutron;
148  break;
149 
150  case PiPlus:
151  case PiZero:
152  case PiMinus:
153  return computePionPotentialEnergy(particle);
154  break;
155 
156  case DeltaPlusPlus:
157  return vDeltaPlusPlus;
158  break;
159  case DeltaPlus:
160  return vDeltaPlus;
161  break;
162  case DeltaZero:
163  return vDeltaZero;
164  break;
165  case DeltaMinus:
166  return vDeltaMinus;
167  break;
168  case Composite:
169  INCL_ERROR("No potential computed for particle of type Cluster.");
170  return 0.0;
171  break;
172  case UnknownParticle:
173  INCL_ERROR("Trying to compute potential energy for an unknown particle.");
174  return 0.0;
175  break;
176  }
177 
178  INCL_ERROR("There is no potential for this type of particle.");
179  return 0.0;
180  }
181 
182  }
183 }
184 
virtual G4double computePotentialEnergy(const Particle *const p) const
std::map< ParticleType, G4double > fermiEnergy
#define INCL_ERROR(x)
int G4int
Definition: G4Types.hh:78
double A(double temperature)
bool G4bool
Definition: G4Types.hh:79
const G4int theA
The mass number of the nucleus.
Isospin-dependent nuclear potential.
Isospin- and energy-independent nuclear potential.
G4ThreadLocal SeparationEnergyFn getSeparationEnergy
Static pointer to the separation-energy function.
G4double getINCLMass(const G4int A, const G4int Z)
Get INCL nuclear mass (in MeV/c^2)
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4INCL::ParticleType getType() const
Get the particle type.
NuclearPotentialIsospin(const G4int A, const G4int Z, const G4bool pionPotential)
std::map< ParticleType, G4double > separationEnergy
const G4int theZ
The charge number of the nucleus.
G4double computePionPotentialEnergy(const Particle *const p) const
Compute the potential energy for the given pion.
double G4double
Definition: G4Types.hh:76
#define INCL_DEBUG(x)
std::map< ParticleType, G4double > fermiMomentum
G4double pow13(G4double x)
G4ThreadLocal FermiMomentumFn getFermiMomentum