Geant4  10.02.p03
G4RPGLambdaInelastic Class Reference

#include <G4RPGLambdaInelastic.hh>

Inheritance diagram for G4RPGLambdaInelastic:
Collaboration diagram for G4RPGLambdaInelastic:

Public Member Functions

 G4RPGLambdaInelastic ()
 
 ~G4RPGLambdaInelastic ()
 
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
- Public Member Functions inherited from G4RPGInelastic
 G4RPGInelastic (const G4String &modelName="RPGInelastic")
 
virtual ~G4RPGInelastic ()
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &, G4Nucleus &)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
const G4HadronicInteractionGetMyPointer () const
 
virtual G4int GetVerboseLevel () const
 
virtual void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
G4bool operator== (const G4HadronicInteraction &right) const
 
G4bool operator!= (const G4HadronicInteraction &right) const
 
virtual const std::pair< G4double, G4doubleGetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double, G4doubleGetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
virtual void ModelDescription (std::ostream &outFile) const
 
virtual void BuildPhysicsTable (const G4ParticleDefinition &)
 

Private Member Functions

void Cascade (G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool &quasiElastic)
 

Additional Inherited Members

- Protected Types inherited from G4RPGInelastic
enum  {
  pi0, pip, pim, kp,
  km, k0, k0b, pro,
  neu, lam, sp, s0,
  sm, xi0, xim, om,
  ap, an
}
 
- Protected Member Functions inherited from G4RPGInelastic
G4double Pmltpc (G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
 
G4int Factorial (G4int n)
 
G4bool MarkLeadingStrangeParticle (const G4ReactionProduct &currentParticle, const G4ReactionProduct &targetParticle, G4ReactionProduct &leadParticle)
 
void SetUpPions (const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
 
void GetNormalizationConstant (const G4double availableEnergy, G4double &n, G4double &anpn)
 
void CalculateMomenta (G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
 
void SetUpChange (G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
 
std::pair< G4int, G4doubleinterpolateEnergy (G4double ke) const
 
G4int sampleFlat (std::vector< G4double > sigma) const
 
void CheckQnums (G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4double Q, G4double B, G4double S)
 
- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4RPGInelastic
G4RPGFragmentation fragmentation
 
G4RPGTwoCluster twoCluster
 
G4RPGPionSuppression pionSuppression
 
G4RPGStrangeProduction strangeProduction
 
G4RPGTwoBody twoBody
 
G4ParticleDefinitionparticleDef [18]
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 44 of file G4RPGLambdaInelastic.hh.

Constructor & Destructor Documentation

◆ G4RPGLambdaInelastic()

G4RPGLambdaInelastic::G4RPGLambdaInelastic ( )
inline

Definition at line 48 of file G4RPGLambdaInelastic.hh.

48  : G4RPGInelastic("G4RPGLambdaInelastic")
49  {
50  SetMinEnergy( 0.0 );
51  SetMaxEnergy( 25.*CLHEP::GeV );
52  }
static const double GeV
void SetMinEnergy(G4double anEnergy)
G4RPGInelastic(const G4String &modelName="RPGInelastic")
void SetMaxEnergy(const G4double anEnergy)
Here is the call graph for this function:

◆ ~G4RPGLambdaInelastic()

G4RPGLambdaInelastic::~G4RPGLambdaInelastic ( )
inline

Definition at line 54 of file G4RPGLambdaInelastic.hh.

54 { }
Here is the call graph for this function:

Member Function Documentation

◆ ApplyYourself()

G4HadFinalState * G4RPGLambdaInelastic::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
)
virtual

Implements G4HadronicInteraction.

Definition at line 36 of file G4RPGLambdaInelastic.cc.

38 {
39  const G4HadProjectile *originalIncident = &aTrack;
40 
41  // create the target particle
42 
43  G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
44 
45  if( verboseLevel > 1 )
46  {
47  const G4Material *targetMaterial = aTrack.GetMaterial();
48  G4cout << "G4RPGLambdaInelastic::ApplyYourself called" << G4endl;
49  G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
50  G4cout << "target material = " << targetMaterial->GetName() << ", ";
51  G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
52  << G4endl;
53  }
54 
55  // Fermi motion and evaporation
56  // As of Geant3, the Fermi energy calculation had not been Done
57 
58  G4double ek = originalIncident->GetKineticEnergy()/MeV;
59  G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
60  G4ReactionProduct modifiedOriginal;
61  modifiedOriginal = *originalIncident;
62 
63  G4double tkin = targetNucleus.Cinema( ek );
64  ek += tkin;
65  modifiedOriginal.SetKineticEnergy( ek*MeV );
66  G4double et = ek + amas;
67  G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
68  G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
69  if( pp > 0.0 )
70  {
71  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
72  modifiedOriginal.SetMomentum( momentum * (p/pp) );
73  }
74  //
75  // calculate black track energies
76  //
77  tkin = targetNucleus.EvaporationEffects( ek );
78  ek -= tkin;
79  modifiedOriginal.SetKineticEnergy( ek*MeV );
80  et = ek + amas;
81  p = std::sqrt( std::abs((et-amas)*(et+amas)) );
82  pp = modifiedOriginal.GetMomentum().mag()/MeV;
83  if( pp > 0.0 )
84  {
85  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
86  modifiedOriginal.SetMomentum( momentum * (p/pp) );
87  }
88 
89  G4ReactionProduct currentParticle = modifiedOriginal;
90  G4ReactionProduct targetParticle;
91  targetParticle = *originalTarget;
92  currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
93  targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
94  G4bool incidentHasChanged = false;
95  G4bool targetHasChanged = false;
96  G4bool quasiElastic = false;
97  G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
98  G4int vecLen = 0;
99  vec.Initialize( 0 );
100 
101  const G4double cutOff = 0.1;
102  if( currentParticle.GetKineticEnergy()/MeV > cutOff )
103  Cascade( vec, vecLen,
104  originalIncident, currentParticle, targetParticle,
105  incidentHasChanged, targetHasChanged, quasiElastic );
106 
107  CalculateMomenta( vec, vecLen,
108  originalIncident, originalTarget, modifiedOriginal,
109  targetNucleus, currentParticle, targetParticle,
110  incidentHasChanged, targetHasChanged, quasiElastic );
111 
112  SetUpChange( vec, vecLen,
113  currentParticle, targetParticle,
114  incidentHasChanged );
115 
116  delete originalTarget;
117  return &theParticleChange;
118 }
static const double MeV
Definition: G4SIunits.hh:211
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:278
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:241
const G4Material * GetMaterial() const
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
void SetKineticEnergy(const G4double en)
void SetMomentum(const G4double x, const G4double y, const G4double z)
void SetSide(const G4int sid)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void Cascade(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool &quasiElastic)
void Initialize(G4int items)
Definition: G4FastVector.hh:63
int G4int
Definition: G4Types.hh:78
const G4String & GetParticleName() const
G4GLOB_DLL std::ostream G4cout
bool G4bool
Definition: G4Types.hh:79
double mag() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:382
G4ParticleDefinition * GetDefinition() const
#define G4endl
Definition: G4ios.hh:61
G4double GetKineticEnergy() const
double G4double
Definition: G4Types.hh:76
const G4String & GetName() const
Definition: G4Material.hh:178
G4ThreeVector GetMomentum() const
Here is the call graph for this function:
Here is the caller graph for this function:

◆ Cascade()

void G4RPGLambdaInelastic::Cascade ( G4FastVector< G4ReactionProduct, GHADLISTSIZE > &  vec,
G4int vecLen,
const G4HadProjectile originalIncident,
G4ReactionProduct currentParticle,
G4ReactionProduct targetParticle,
G4bool incidentHasChanged,
G4bool targetHasChanged,
G4bool quasiElastic 
)
private

Definition at line 121 of file G4RPGLambdaInelastic.cc.

130 {
131  // Derived from H. Fesefeldt's original FORTRAN code CASL0
132  //
133  // Lambda undergoes interaction with nucleon within a nucleus. Check if it is
134  // energetically possible to produce pions/kaons. In not, assume nuclear excitation
135  // occurs and input particle is degraded in energy. No other particles are produced.
136  // If reaction is possible, find the correct number of pions/protons/neutrons
137  // produced using an interpolation to multiplicity data. Replace some pions or
138  // protons/neutrons by kaons or strange baryons according to the average
139  // multiplicity per Inelastic reaction.
140 
141  const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
142  const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
143  const G4double targetMass = targetParticle.GetMass()/MeV;
144  G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
145  targetMass*targetMass +
146  2.0*targetMass*etOriginal );
147  G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
148  if( availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV )
149  {
150  quasiElastic = true;
151  return;
152  }
153  static G4ThreadLocal G4bool first = true;
154  const G4int numMul = 1200;
155  const G4int numSec = 60;
156  static G4ThreadLocal G4double protmul[numMul], protnorm[numSec]; // proton constants
157  static G4ThreadLocal G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
158 
159  // np = number of pi+, nneg = number of pi-, nz = number of pi0
160 
161  G4int counter, nt=0, np=0, nneg=0, nz=0;
162  G4double test;
163  const G4double c = 1.25;
164  const G4double b[] = { 0.70, 0.35 };
165  if( first ) { // compute normalization constants, this will only be Done once
166  first = false;
167  G4int i;
168  for( i=0; i<numMul; ++i )protmul[i] = 0.0;
169  for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
170  counter = -1;
171  for( np=0; np<(numSec/3); ++np ) {
172  for( nneg=std::max(0,np-2); nneg<=(np+1); ++nneg ) {
173  for( nz=0; nz<numSec/3; ++nz ) {
174  if( ++counter < numMul ) {
175  nt = np+nneg+nz;
176  if( nt>0 && nt<=numSec ) {
177  protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
178  protnorm[nt-1] += protmul[counter];
179  }
180  }
181  }
182  }
183  }
184  for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
185  for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
186  counter = -1;
187  for( np=0; np<numSec/3; ++np ) {
188  for( nneg=std::max(0,np-1); nneg<=(np+2); ++nneg ) {
189  for( nz=0; nz<numSec/3; ++nz ) {
190  if( ++counter < numMul ) {
191  nt = np+nneg+nz;
192  if( nt>0 && nt<=numSec ) {
193  neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
194  neutnorm[nt-1] += neutmul[counter];
195  }
196  }
197  }
198  }
199  }
200  for( i=0; i<numSec; ++i ) {
201  if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
202  if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
203  }
204  } // end of initialization
205 
206  const G4double expxu = 82.; // upper bound for arg. of exp
207  const G4double expxl = -expxu; // lower bound for arg. of exp
213 
214  // energetically possible to produce pion(s) --> inelastic scattering
215  // otherwise quasi-elastic scattering
216 
217  G4double n, anpn;
218  GetNormalizationConstant( availableEnergy, n, anpn );
219  G4double ran = G4UniformRand();
220  G4double dum, excs = 0.0;
221  if( targetParticle.GetDefinition() == aProton ) {
222  counter = -1;
223  for( np=0; np<numSec/3 && ran>=excs; ++np ) {
224  for( nneg=std::max(0,np-2); nneg<=(np+1) && ran>=excs; ++nneg ) {
225  for( nz=0; nz<numSec/3 && ran>=excs; ++nz ) {
226  if( ++counter < numMul ) {
227  nt = np+nneg+nz;
228  if( nt>0 && nt<=numSec ) {
229  test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
230  dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
231  if( std::fabs(dum) < 1.0 ) {
232  if( test >= 1.0e-10 )excs += dum*test;
233  } else {
234  excs += dum*test;
235  }
236  }
237  }
238  }
239  }
240  }
241  if( ran >= excs ) // 3 previous loops continued to the end
242  {
243  quasiElastic = true;
244  return;
245  }
246  np--; nneg--; nz--;
247  G4int ncht = std::max( 1, np-nneg );
248  switch( ncht ) {
249  case 1:
250  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
251  incidentHasChanged = true;
252  break;
253  case 2:
254  if( G4UniformRand() < 0.5 ) {
255  if( G4UniformRand() < 0.5 ) {
256  currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
257  incidentHasChanged = true;
258  }
259  } else {
260  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
261  incidentHasChanged = true;
262  targetParticle.SetDefinitionAndUpdateE( aNeutron );
263  targetHasChanged = true;
264  }
265  break;
266  case 3:
267  if( G4UniformRand() < 0.5 ) {
268  if( G4UniformRand() < 0.5 ) {
269  currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
270  incidentHasChanged = true;
271  }
272  targetParticle.SetDefinitionAndUpdateE( aNeutron );
273  targetHasChanged = true;
274  } else {
275  currentParticle.SetDefinitionAndUpdateE( aSigmaMinus );
276  incidentHasChanged = true;
277  }
278  break;
279  default:
280  currentParticle.SetDefinitionAndUpdateE( aSigmaMinus );
281  incidentHasChanged = true;
282  targetParticle.SetDefinitionAndUpdateE( aNeutron );
283  targetHasChanged = true;
284  break;
285  }
286  }
287  else // target must be a neutron
288  {
289  counter = -1;
290  for( np=0; np<numSec/3 && ran>=excs; ++np ) {
291  for( nneg=std::max(0,np-1); nneg<=(np+2) && ran>=excs; ++nneg ) {
292  for( nz=0; nz<numSec/3 && ran>=excs; ++nz ) {
293  if( ++counter < numMul ) {
294  nt = np+nneg+nz;
295  if( nt>0 && nt<=numSec ) {
296  test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
297  dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
298  if( std::fabs(dum) < 1.0 ) {
299  if( test >= 1.0e-10 )excs += dum*test;
300  } else {
301  excs += dum*test;
302  }
303  }
304  }
305  }
306  }
307  }
308  if( ran >= excs ) // 3 previous loops continued to the end
309  {
310  quasiElastic = true;
311  return;
312  }
313  np--; nneg--; nz--;
314  G4int ncht = std::max( 1, np-nneg+3 );
315  switch( ncht ) {
316  case 1:
317  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
318  incidentHasChanged = true;
319  targetParticle.SetDefinitionAndUpdateE( aProton );
320  targetHasChanged = true;
321  break;
322  case 2:
323  if( G4UniformRand() < 0.5 ) {
324  if( G4UniformRand() < 0.5 ) {
325  currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
326  incidentHasChanged = true;
327  }
328  targetParticle.SetDefinitionAndUpdateE( aProton );
329  targetHasChanged = true;
330  } else {
331  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
332  incidentHasChanged = true;
333  }
334  break;
335  case 3:
336  if( G4UniformRand() < 0.5 ) {
337  if( G4UniformRand() < 0.5 ) {
338  currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
339  incidentHasChanged = true;
340  }
341  } else {
342  currentParticle.SetDefinitionAndUpdateE( aSigmaMinus );
343  incidentHasChanged = true;
344  targetParticle.SetDefinitionAndUpdateE( aProton );
345  targetHasChanged = true;
346  }
347  break;
348  default:
349  currentParticle.SetDefinitionAndUpdateE( aSigmaMinus );
350  incidentHasChanged = true;
351  break;
352  }
353  }
354 
355  SetUpPions(np, nneg, nz, vec, vecLen);
356  return;
357 }
G4double GetMass() const
static const double MeV
Definition: G4SIunits.hh:211
G4double GetTotalEnergy() const
#define G4ThreadLocal
Definition: tls.hh:89
int G4int
Definition: G4Types.hh:78
static G4SigmaZero * SigmaZero()
Definition: G4SigmaZero.cc:102
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
Char_t n[5]
#define G4UniformRand()
Definition: Randomize.hh:97
bool G4bool
Definition: G4Types.hh:79
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
void SetDefinitionAndUpdateE(const G4ParticleDefinition *aParticleDefinition)
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
static G4SigmaMinus * SigmaMinus()
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
const G4ParticleDefinition * GetDefinition() const
static const double pi
Definition: G4SIunits.hh:74
const G4ParticleDefinition * GetDefinition() const
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:108
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
double G4double
Definition: G4Types.hh:76
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
program test
Definition: Main_HIJING.f:1
Here is the call graph for this function:
Here is the caller graph for this function:

The documentation for this class was generated from the following files: