Geant4  10.02.p03
G4RPGAntiXiZeroInelastic Class Reference

#include <G4RPGAntiXiZeroInelastic.hh>

Inheritance diagram for G4RPGAntiXiZeroInelastic:
Collaboration diagram for G4RPGAntiXiZeroInelastic:

Public Member Functions

 G4RPGAntiXiZeroInelastic ()
 
 ~G4RPGAntiXiZeroInelastic ()
 
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
- Public Member Functions inherited from G4RPGInelastic
 G4RPGInelastic (const G4String &modelName="RPGInelastic")
 
virtual ~G4RPGInelastic ()
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &, G4Nucleus &)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
const G4HadronicInteractionGetMyPointer () const
 
virtual G4int GetVerboseLevel () const
 
virtual void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
G4bool operator== (const G4HadronicInteraction &right) const
 
G4bool operator!= (const G4HadronicInteraction &right) const
 
virtual const std::pair< G4double, G4doubleGetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double, G4doubleGetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
virtual void ModelDescription (std::ostream &outFile) const
 
virtual void BuildPhysicsTable (const G4ParticleDefinition &)
 

Private Member Functions

void Cascade (G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool &quasiElastic)
 

Additional Inherited Members

- Protected Types inherited from G4RPGInelastic
enum  {
  pi0, pip, pim, kp,
  km, k0, k0b, pro,
  neu, lam, sp, s0,
  sm, xi0, xim, om,
  ap, an
}
 
- Protected Member Functions inherited from G4RPGInelastic
G4double Pmltpc (G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
 
G4int Factorial (G4int n)
 
G4bool MarkLeadingStrangeParticle (const G4ReactionProduct &currentParticle, const G4ReactionProduct &targetParticle, G4ReactionProduct &leadParticle)
 
void SetUpPions (const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
 
void GetNormalizationConstant (const G4double availableEnergy, G4double &n, G4double &anpn)
 
void CalculateMomenta (G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
 
void SetUpChange (G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
 
std::pair< G4int, G4doubleinterpolateEnergy (G4double ke) const
 
G4int sampleFlat (std::vector< G4double > sigma) const
 
void CheckQnums (G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4double Q, G4double B, G4double S)
 
- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4RPGInelastic
G4RPGFragmentation fragmentation
 
G4RPGTwoCluster twoCluster
 
G4RPGPionSuppression pionSuppression
 
G4RPGStrangeProduction strangeProduction
 
G4RPGTwoBody twoBody
 
G4ParticleDefinitionparticleDef [18]
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 44 of file G4RPGAntiXiZeroInelastic.hh.

Constructor & Destructor Documentation

◆ G4RPGAntiXiZeroInelastic()

G4RPGAntiXiZeroInelastic::G4RPGAntiXiZeroInelastic ( )
inline

Definition at line 48 of file G4RPGAntiXiZeroInelastic.hh.

48  : G4RPGInelastic("G4RPGAntiXiZeroInelastic")
49  {
50  SetMinEnergy( 0.0 );
51  SetMaxEnergy( 25.*CLHEP::GeV );
52  }
static const double GeV
void SetMinEnergy(G4double anEnergy)
G4RPGInelastic(const G4String &modelName="RPGInelastic")
void SetMaxEnergy(const G4double anEnergy)
Here is the call graph for this function:

◆ ~G4RPGAntiXiZeroInelastic()

G4RPGAntiXiZeroInelastic::~G4RPGAntiXiZeroInelastic ( )
inline

Definition at line 54 of file G4RPGAntiXiZeroInelastic.hh.

54 { }
Here is the call graph for this function:

Member Function Documentation

◆ ApplyYourself()

G4HadFinalState * G4RPGAntiXiZeroInelastic::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
)
virtual

Implements G4HadronicInteraction.

Definition at line 40 of file G4RPGAntiXiZeroInelastic.cc.

42 {
43  const G4HadProjectile *originalIncident = &aTrack;
44 
45  // Choose the target particle
46 
47  G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
48 
49  if( verboseLevel > 1 )
50  {
51  const G4Material *targetMaterial = aTrack.GetMaterial();
52  G4cout << "G4RPGAntiXiZeroInelastic::ApplyYourself called" << G4endl;
53  G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
54  G4cout << "target material = " << targetMaterial->GetName() << ", ";
55  G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
56  << G4endl;
57  }
58 
59  // Fermi motion and evaporation
60  // As of Geant3, the Fermi energy calculation had not been Done
61 
62  G4double ek = originalIncident->GetKineticEnergy()/MeV;
63  G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
64  G4ReactionProduct modifiedOriginal;
65  modifiedOriginal = *originalIncident;
66 
67  G4double tkin = targetNucleus.Cinema( ek );
68  ek += tkin;
69  modifiedOriginal.SetKineticEnergy( ek*MeV );
70  G4double et = ek + amas;
71  G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
72  G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
73  if( pp > 0.0 )
74  {
75  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
76  modifiedOriginal.SetMomentum( momentum * (p/pp) );
77  }
78  //
79  // calculate black track energies
80  //
81  tkin = targetNucleus.EvaporationEffects( ek );
82  ek -= tkin;
83  modifiedOriginal.SetKineticEnergy( ek*MeV );
84  et = ek + amas;
85  p = std::sqrt( std::abs((et-amas)*(et+amas)) );
86  pp = modifiedOriginal.GetMomentum().mag()/MeV;
87  if( pp > 0.0 )
88  {
89  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
90  modifiedOriginal.SetMomentum( momentum * (p/pp) );
91  }
92  G4ReactionProduct currentParticle = modifiedOriginal;
93  G4ReactionProduct targetParticle;
94  targetParticle = *originalTarget;
95  currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
96  targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
97  G4bool incidentHasChanged = false;
98  G4bool targetHasChanged = false;
99  G4bool quasiElastic = false;
100  G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
101  G4int vecLen = 0;
102  vec.Initialize( 0 );
103 
104  const G4double cutOff = 0.1;
105  const G4double anni = std::min( 1.3*currentParticle.GetTotalMomentum()/GeV, 0.4 );
106  if( (currentParticle.GetKineticEnergy()/MeV > cutOff) || (G4UniformRand() > anni) )
107  Cascade( vec, vecLen,
108  originalIncident, currentParticle, targetParticle,
109  incidentHasChanged, targetHasChanged, quasiElastic );
110 
111  CalculateMomenta( vec, vecLen,
112  originalIncident, originalTarget, modifiedOriginal,
113  targetNucleus, currentParticle, targetParticle,
114  incidentHasChanged, targetHasChanged, quasiElastic );
115 
116  SetUpChange( vec, vecLen,
117  currentParticle, targetParticle,
118  incidentHasChanged );
119 
120  delete originalTarget;
121  return &theParticleChange;
122 }
static const double MeV
Definition: G4SIunits.hh:211
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:278
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:241
const G4Material * GetMaterial() const
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
void SetKineticEnergy(const G4double en)
void SetMomentum(const G4double x, const G4double y, const G4double z)
void SetSide(const G4int sid)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void Initialize(G4int items)
Definition: G4FastVector.hh:63
int G4int
Definition: G4Types.hh:78
const G4String & GetParticleName() const
#define G4UniformRand()
Definition: Randomize.hh:97
G4GLOB_DLL std::ostream G4cout
bool G4bool
Definition: G4Types.hh:79
double mag() const
static const double GeV
Definition: G4SIunits.hh:214
G4double GetTotalMomentum() const
const G4ParticleDefinition * GetDefinition() const
void Cascade(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool &quasiElastic)
G4double GetKineticEnergy() const
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:382
G4ParticleDefinition * GetDefinition() const
#define G4endl
Definition: G4ios.hh:61
G4double GetKineticEnergy() const
double G4double
Definition: G4Types.hh:76
const G4String & GetName() const
Definition: G4Material.hh:178
G4ThreeVector GetMomentum() const
Here is the call graph for this function:
Here is the caller graph for this function:

◆ Cascade()

void G4RPGAntiXiZeroInelastic::Cascade ( G4FastVector< G4ReactionProduct, GHADLISTSIZE > &  vec,
G4int vecLen,
const G4HadProjectile originalIncident,
G4ReactionProduct currentParticle,
G4ReactionProduct targetParticle,
G4bool incidentHasChanged,
G4bool targetHasChanged,
G4bool quasiElastic 
)
private

Definition at line 125 of file G4RPGAntiXiZeroInelastic.cc.

134 {
135  // Derived from H. Fesefeldt's original FORTRAN code CASAX0
136  // which is just a copy of CASX0 (cascade for Xi0)
137  // AntiXiZero undergoes interaction with nucleon within a nucleus. Check if it is
138  // energetically possible to produce pions/kaons. In not, assume nuclear excitation
139  // occurs and input particle is degraded in energy. No other particles are produced.
140  // If reaction is possible, find the correct number of pions/protons/neutrons
141  // produced using an interpolation to multiplicity data. Replace some pions or
142  // protons/neutrons by kaons or strange baryons according to the average
143  // multiplicity per inelastic reaction.
144 
145  const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
146  const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
147  const G4double targetMass = targetParticle.GetMass()/MeV;
148  G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
149  targetMass*targetMass +
150  2.0*targetMass*etOriginal );
151  G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
152  if (availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV) {
153  quasiElastic = true;
154  return;
155  }
156  static G4ThreadLocal G4bool first = true;
157  const G4int numMul = 1200;
158  const G4int numSec = 60;
159  static G4ThreadLocal G4double protmul[numMul], protnorm[numSec]; // proton constants
160  static G4ThreadLocal G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
161 
162  // np = number of pi+, nneg = number of pi-, nz = number of pi0
163  G4int counter, nt=0, np=0, nneg=0, nz=0;
164  G4double test;
165  const G4double c = 1.25;
166  const G4double b[] = { 0.7, 0.7 };
167  if (first) { // Computation of normalization constants will only be done once
168  first = false;
169  G4int i;
170  for( i=0; i<numMul; ++i )protmul[i] = 0.0;
171  for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
172  counter = -1;
173  for (np = 0; np < (numSec/3); ++np) {
174  for( nneg=std::max(0,np-2); nneg<=(np+1); ++nneg )
175  {
176  for( nz=0; nz<numSec/3; ++nz )
177  {
178  if( ++counter < numMul )
179  {
180  nt = np+nneg+nz;
181  if( nt>0 && nt<=numSec )
182  {
183  protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
184  protnorm[nt-1] += protmul[counter];
185  }
186  }
187  }
188  }
189  }
190  for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
191  for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
192  counter = -1;
193  for( np=0; np<numSec/3; ++np )
194  {
195  for( nneg=std::max(0,np-1); nneg<=(np+2); ++nneg )
196  {
197  for( nz=0; nz<numSec/3; ++nz )
198  {
199  if( ++counter < numMul )
200  {
201  nt = np+nneg+nz;
202  if( nt>0 && nt<=numSec )
203  {
204  neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
205  neutnorm[nt-1] += neutmul[counter];
206  }
207  }
208  }
209  }
210  }
211  for( i=0; i<numSec; ++i )
212  {
213  if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
214  if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
215  }
216  } // end of initialization
217 
218  const G4double expxu = 82.; // upper bound for arg. of exp
219  const G4double expxl = -expxu; // lower bound for arg. of exp
225  //
226  // energetically possible to produce pion(s) --> inelastic scattering
227  //
228  G4double n, anpn;
229  GetNormalizationConstant( availableEnergy, n, anpn );
230  G4double ran = G4UniformRand();
231  G4double dum, excs = 0.0;
232  if( targetParticle.GetDefinition() == aProton )
233  {
234  counter = -1;
235  for( np=0; np<numSec/3 && ran>=excs; ++np )
236  {
237  for( nneg=std::max(0,np-2); nneg<=(np+1) && ran>=excs; ++nneg )
238  {
239  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
240  {
241  if( ++counter < numMul )
242  {
243  nt = np+nneg+nz;
244  if( nt>0 && nt<=numSec )
245  {
246  test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
247  dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
248  if( std::fabs(dum) < 1.0 )
249  {
250  if( test >= 1.0e-10 )excs += dum*test;
251  }
252  else
253  excs += dum*test;
254  }
255  }
256  }
257  }
258  }
259  if( ran >= excs ) // 3 previous loops continued to the end
260  {
261  quasiElastic = true;
262  return;
263  }
264  np--; nneg--; nz--;
265  //
266  // number of secondary mesons determined by kno distribution
267  // check for total charge of final state mesons to determine
268  // the kind of baryons to be produced, taking into account
269  // charge and strangeness conservation
270  //
271  if( np < nneg+1 )
272  {
273  if( np != nneg ) // charge mismatch
274  {
275  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
276  incidentHasChanged = true;
277  //
278  // correct the strangeness by replacing a pi- by a kaon-
279  //
280  vec.Initialize( 1 );
282  p->SetDefinition( aKaonMinus );
283  (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
284  vec.SetElement( vecLen++, p );
285  --nneg;
286  }
287  }
288  else if( np == nneg+1 )
289  {
290  if( G4UniformRand() < 0.5 )
291  {
292  targetParticle.SetDefinitionAndUpdateE( aNeutron );
293  targetHasChanged = true;
294  }
295  else
296  {
297  currentParticle.SetDefinitionAndUpdateE( aXiMinus );
298  incidentHasChanged = true;
299  }
300  }
301  else
302  {
303  currentParticle.SetDefinitionAndUpdateE( aXiMinus );
304  incidentHasChanged = true;
305  targetParticle.SetDefinitionAndUpdateE( aNeutron );
306  targetHasChanged = true;
307  }
308  }
309  else // target must be a neutron
310  {
311  counter = -1;
312  for( np=0; np<numSec/3 && ran>=excs; ++np )
313  {
314  for( nneg=std::max(0,np-1); nneg<=(np+2) && ran>=excs; ++nneg )
315  {
316  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
317  {
318  if( ++counter < numMul )
319  {
320  nt = np+nneg+nz;
321  if( nt>0 && nt<=numSec )
322  {
323  test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
324  dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
325  if( std::fabs(dum) < 1.0 )
326  {
327  if( test >= 1.0e-10 )excs += dum*test;
328  }
329  else
330  excs += dum*test;
331  }
332  }
333  }
334  }
335  }
336  if( ran >= excs ) // 3 previous loops continued to the end
337  {
338  quasiElastic = true;
339  return;
340  }
341  np--; nneg--; nz--;
342  if( np < nneg )
343  {
344  if( np+1 == nneg )
345  {
346  targetParticle.SetDefinitionAndUpdateE( aProton );
347  targetHasChanged = true;
348  }
349  else // charge mismatch
350  {
351  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
352  incidentHasChanged = true;
353  targetParticle.SetDefinitionAndUpdateE( aProton );
354  targetHasChanged = true;
355  //
356  // correct the strangeness by replacing a pi- by a kaon-
357  //
358  vec.Initialize( 1 );
360  p->SetDefinition( aKaonMinus );
361  (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
362  vec.SetElement( vecLen++, p );
363  --nneg;
364  }
365  }
366  else if( np == nneg )
367  {
368  if( G4UniformRand() >= 0.5 )
369  {
370  currentParticle.SetDefinitionAndUpdateE( aXiMinus );
371  incidentHasChanged = true;
372  targetParticle.SetDefinitionAndUpdateE( aProton );
373  targetHasChanged = true;
374  }
375  }
376  else
377  {
378  currentParticle.SetDefinitionAndUpdateE( aXiMinus );
379  incidentHasChanged = true;
380  }
381  }
382 
383  SetUpPions(np, nneg, nz, vec, vecLen);
384  return;
385 }
G4double GetMass() const
void SetElement(G4int anIndex, Type *anElement)
Definition: G4FastVector.hh:76
static const double MeV
Definition: G4SIunits.hh:211
G4double GetTotalEnergy() const
void SetSide(const G4int sid)
#define G4ThreadLocal
Definition: tls.hh:89
void Initialize(G4int items)
Definition: G4FastVector.hh:63
int G4int
Definition: G4Types.hh:78
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
Char_t n[5]
#define G4UniformRand()
Definition: Randomize.hh:97
bool G4bool
Definition: G4Types.hh:79
static G4XiMinus * XiMinus()
Definition: G4XiMinus.cc:106
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
void SetDefinitionAndUpdateE(const G4ParticleDefinition *aParticleDefinition)
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
const G4ParticleDefinition * GetDefinition() const
static const double pi
Definition: G4SIunits.hh:74
const G4ParticleDefinition * GetDefinition() const
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:108
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
double G4double
Definition: G4Types.hh:76
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
program test
Definition: Main_HIJING.f:1
Here is the call graph for this function:
Here is the caller graph for this function:

The documentation for this class was generated from the following files: