Geant4  10.02.p03
G4RKFieldIntegrator Class Reference

#include <G4RKFieldIntegrator.hh>

Inheritance diagram for G4RKFieldIntegrator:
Collaboration diagram for G4RKFieldIntegrator:

Public Member Functions

 G4RKFieldIntegrator ()
 
 G4RKFieldIntegrator (const G4RKFieldIntegrator &)
 
 ~G4RKFieldIntegrator ()
 
const G4RKFieldIntegratoroperator= (const G4RKFieldIntegrator &)
 
int operator== (const G4RKFieldIntegrator &) const
 
int operator!= (const G4RKFieldIntegrator &) const
 
void Transport (G4KineticTrackVector &theActive, const G4KineticTrackVector &theSpectators, G4double theTimeStep)
 
G4double GetExcitationEnergy (G4int nHitNucleons, const G4KineticTrackVector &theParticles)
 
void Init (G4int z, G4int a)
 
G4double GetNeutronPotential (G4double radius)
 
G4double GetNeutronPotential (G4ThreeVector &aPosition)
 
G4double GetProtonPotential (G4double radius)
 
G4double GetProtonPotential (G4ThreeVector &aPosition)
 
G4double GetAntiprotonPotential (G4double radius)
 
G4double GetAntiprotonPotential (G4ThreeVector &aPosition)
 
G4double GetKaonPotential (G4double radius)
 
G4double GetKaonPotential (G4ThreeVector &aPosition)
 
G4double GetPionPotential (G4double radius)
 
G4double GetPionPotential (G4ThreeVector &aPosition)
 
- Public Member Functions inherited from G4FieldPropagation
 G4FieldPropagation ()
 
 G4FieldPropagation (const G4FieldPropagation &)
 
virtual ~G4FieldPropagation ()
 

Private Member Functions

void Integrate (const G4KineticTrackVector &theActive, G4double theTimeStep)
 
G4double CalculateTotalEnergy (const G4KineticTrackVector &Barions)
 
G4double Erf (G4double X)
 

Private Attributes

G4int theA
 
G4int theZ
 

Static Private Attributes

static const G4double coulomb = 1.44 / 1.14 * MeV
 
static const G4double a_kaon = 0.35
 
static const G4double a_pion = 0.35
 ! for pions it has todiffer from kaons More...
 
static const G4double a_antiproton = 1.53
 

Detailed Description

Definition at line 31 of file G4RKFieldIntegrator.hh.

Constructor & Destructor Documentation

◆ G4RKFieldIntegrator() [1/2]

G4RKFieldIntegrator::G4RKFieldIntegrator ( )
inline

Definition at line 34 of file G4RKFieldIntegrator.hh.

34 {}

◆ G4RKFieldIntegrator() [2/2]

G4RKFieldIntegrator::G4RKFieldIntegrator ( const G4RKFieldIntegrator )
inline

Definition at line 35 of file G4RKFieldIntegrator.hh.

◆ ~G4RKFieldIntegrator()

G4RKFieldIntegrator::~G4RKFieldIntegrator ( )
inline

Definition at line 37 of file G4RKFieldIntegrator.hh.

37 {}

Member Function Documentation

◆ CalculateTotalEnergy()

G4double G4RKFieldIntegrator::CalculateTotalEnergy ( const G4KineticTrackVector Barions)
private

Definition at line 53 of file G4RKFieldIntegrator.cc.

54 {
55  const G4double Alpha = 0.25/fermi/fermi;
56  const G4double t1 = -7264.04*fermi*fermi*fermi;
57  const G4double tGamma = 87.65*fermi*fermi*fermi*fermi*fermi*fermi;
58 // const G4double Gamma = 1.676;
59  const G4double Vo = -0.498*fermi;
60  const G4double GammaY = 1.4*fermi;
61 
62  G4double Etot = 0;
63  G4int nBarion = Barions.size();
64  for(G4int c1 = 0; c1 < nBarion; c1++)
65  {
66  G4KineticTrack* p1 = Barions.operator[](c1);
67  // Ekin
68  Etot += p1->Get4Momentum().e();
69  for(G4int c2 = c1 + 1; c2 < nBarion; c2++)
70  {
71  G4KineticTrack* p2 = Barions.operator[](c2);
72  G4double r12 = (p1->GetPosition() - p2->GetPosition()).mag()*fermi;
73 
74  // Esk2
75  Etot += t1*G4Pow::GetInstance()->A23(Alpha/pi)*G4Exp(-Alpha*r12*r12);
76 
77  // Eyuk
78  Etot += Vo*0.5/r12*G4Exp(1/(4*Alpha*GammaY*GammaY))*
79  (G4Exp(-r12/GammaY)*(1 - Erf(0.5/GammaY/std::sqrt(Alpha) - std::sqrt(Alpha)*r12)) -
80  G4Exp( r12/GammaY)*(1 - Erf(0.5/GammaY/std::sqrt(Alpha) + std::sqrt(Alpha)*r12)));
81 
82  // Ecoul
83  Etot += 1.44*p1->GetDefinition()->GetPDGCharge()*p2->GetDefinition()->GetPDGCharge()/r12*Erf(std::sqrt(Alpha)*r12);
84 
85  // Epaul
86  Etot = 0;
87 
88  for(G4int c3 = c2 + 1; c3 < nBarion; c3++)
89  {
90  G4KineticTrack* p3 = Barions.operator[](c3);
91  G4double r13 = (p1->GetPosition() - p3->GetPosition()).mag()*fermi;
92 
93  // Esk3
94  Etot = tGamma*G4Pow::GetInstance()->powA(4*Alpha*Alpha/3/pi/pi, 1.5)*G4Exp(-Alpha*(r12*r12 + r13*r13));
95  }
96  }
97  }
98  return Etot;
99 }
const G4ParticleDefinition * GetDefinition() const
static G4Pow * GetInstance()
Definition: G4Pow.cc:55
TTree * t1
Definition: plottest35.C:26
const G4ThreeVector & GetPosition() const
int G4int
Definition: G4Types.hh:78
G4double A23(G4double A) const
Definition: G4Pow.hh:160
G4double Erf(G4double X)
static const G4double c3
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
TCanvas * c2
Definition: plot_hist.C:75
static const double pi
Definition: G4SIunits.hh:74
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:259
double G4double
Definition: G4Types.hh:76
G4double GetPDGCharge() const
static const double fermi
Definition: G4SIunits.hh:102
const G4LorentzVector & Get4Momentum() const
Here is the call graph for this function:
Here is the caller graph for this function:

◆ Erf()

G4double G4RKFieldIntegrator::Erf ( G4double  X)
private

Definition at line 103 of file G4RKFieldIntegrator.cc.

104 {
105  const G4double Z1 = 1;
106  const G4double HF = Z1/2;
107  const G4double C1 = 0.56418958;
108 
109  const G4double P10 = +3.6767877;
110  const G4double Q10 = +3.2584593;
111  const G4double P11 = -9.7970465E-2;
112 
113 // static G4ThreadLocal G4double P2[5] = { 7.3738883, 6.8650185, 3.0317993, 0.56316962, 4.3187787e-5 };
114 // static G4ThreadLocal G4double Q2[5] = { 7.3739609, 15.184908, 12.79553, 5.3542168, 1. };
115  const G4double P2[5] = { 7.3738883, 6.8650185, 3.0317993, 0.56316962, 4.3187787e-5 };
116  const G4double Q2[5] = { 7.3739609, 15.184908, 12.79553, 5.3542168, 1. };
117 
118  const G4double P30 = -1.2436854E-1;
119  const G4double Q30 = +4.4091706E-1;
120  const G4double P31 = -9.6821036E-2;
121 
122  G4double V = std::abs(X);
123  G4double H;
124  G4double Y;
125  G4int c1;
126 
127  if(V < HF)
128  {
129  Y = V*V;
130  H = X*(P10 + P11*Y)/(Q10+Y);
131  }
132  else
133  {
134  if(V < 4)
135  {
136  G4double AP = P2[4];
137  G4double AQ = Q2[4];
138  for(c1 = 3; c1 >= 0; c1--)
139  {
140  AP = P2[c1] + V*AP;
141  AQ = Q2[c1] + V*AQ;
142  }
143  H = 1 - G4Exp(-V*V)*AP/AQ;
144  }
145  else
146  {
147  Y = 1./V*V;
148  H = 1 - G4Exp(-V*V)*(C1+Y*(P30 + P31*Y)/(Q30 + Y))/V;
149  }
150  if (X < 0)
151  H = -H;
152  }
153  return H;
154 }
const double C1
static const G4double P10[nE]
Float_t Y
static const G4double P11[nE]
int G4int
Definition: G4Types.hh:78
Float_t X
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
static const G4double * P2[nN]
double G4double
Definition: G4Types.hh:76
Double_t Z1
Here is the call graph for this function:
Here is the caller graph for this function:

◆ GetAntiprotonPotential() [1/2]

G4double G4RKFieldIntegrator::GetAntiprotonPotential ( G4double  radius)
virtual

Implements G4FieldPropagation.

Definition at line 296 of file G4RKFieldIntegrator.cc.

297 {
298  /*
299  //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ);
300  G4double theM = theZ * G4Proton::Proton()->GetPDGMass()
301  + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass()
302  + G4CreateNucleus::GetBindingEnergy(theZ, theA);
303 
304  const G4double Mp = 938.27231 * MeV; // mass of proton
305  G4double mu = (theM * Mp)/(theM + Mp);
306 
307  // antiproton's potential coefficient
308  // V = coeff_antiproton * nucleus_density
309  G4double coeff_antiproton = -2.*pi/mu * (1. + Mp) * a_antiproton;
310 
311  G4VNuclearDensity *theDencity;
312  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
313  else theDencity = new G4NuclearFermiDensity(theA, theZ);
314 
315  // GetDencity() accepts only G4ThreeVector so build it:
316  G4ThreeVector aPosition(0.0, 0.0, radius);
317  G4double density = theDencity->GetDensity(aPosition);
318  delete theDencity;
319 
320  return coeff_antiproton * density;
321  */
322 
323  return 0.0;
324 }
Here is the caller graph for this function:

◆ GetAntiprotonPotential() [2/2]

G4double G4RKFieldIntegrator::GetAntiprotonPotential ( G4ThreeVector aPosition)
inlinevirtual

Implements G4FieldPropagation.

Definition at line 61 of file G4RKFieldIntegrator.hh.

61 {return GetAntiprotonPotential(aPosition.mag());};
double mag() const
G4double GetAntiprotonPotential(G4double radius)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ GetExcitationEnergy()

G4double G4RKFieldIntegrator::GetExcitationEnergy ( G4int  nHitNucleons,
const G4KineticTrackVector theParticles 
)
virtual

Implements G4FieldPropagation.

Definition at line 185 of file G4RKFieldIntegrator.cc.

186 {
187  const G4double MeanE = 50;
188  G4double Sum = 0;
189  for(G4int c1 = 0; c1 < nHitNucleons; c1++)
190  {
191  Sum += -MeanE*G4Log(G4UniformRand());
192  }
193  return Sum;
194 }
int G4int
Definition: G4Types.hh:78
#define G4UniformRand()
Definition: Randomize.hh:97
G4double G4Log(G4double x)
Definition: G4Log.hh:230
double G4double
Definition: G4Types.hh:76
Here is the call graph for this function:
Here is the caller graph for this function:

◆ GetKaonPotential() [1/2]

G4double G4RKFieldIntegrator::GetKaonPotential ( G4double  radius)
virtual

Implements G4FieldPropagation.

Definition at line 326 of file G4RKFieldIntegrator.cc.

327 {
328  /*
329  //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ);
330  G4double theM = theZ * G4Proton::Proton()->GetPDGMass()
331  + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass()
332  + G4CreateNucleus::GetBindingEnergy(theZ, theA);
333 
334  const G4double Mk = 496. * MeV; // mass of "kaon"
335  G4double mu = (theM * Mk)/(theM + Mk);
336 
337  // kaon's potential coefficient
338  // V = coeff_kaon * nucleus_density
339  G4double coeff_kaon = -2.*pi/mu * (1. + Mk/theM) * a_kaon;
340 
341  G4VNuclearDensity *theDencity;
342  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
343  else theDencity = new G4NuclearFermiDensity(theA, theZ);
344 
345  // GetDencity() accepts only G4ThreeVector so build it:
346  G4ThreeVector aPosition(0.0, 0.0, radius);
347  G4double density = theDencity->GetDensity(aPosition);
348  delete theDencity;
349 
350  return coeff_kaon * density;
351  */
352 
353  return 0.0;
354 }
Here is the caller graph for this function:

◆ GetKaonPotential() [2/2]

G4double G4RKFieldIntegrator::GetKaonPotential ( G4ThreeVector aPosition)
inlinevirtual

Implements G4FieldPropagation.

Definition at line 64 of file G4RKFieldIntegrator.hh.

64 {return GetKaonPotential(aPosition.mag());}
double mag() const
G4double GetKaonPotential(G4double radius)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ GetNeutronPotential() [1/2]

G4double G4RKFieldIntegrator::GetNeutronPotential ( G4double  radius)
virtual

Implements G4FieldPropagation.

Definition at line 239 of file G4RKFieldIntegrator.cc.

240 {
241  /*
242  const G4double Mn = 939.56563 * MeV; // mass of nuetron
243 
244  G4VNuclearDensity *theDencity;
245  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
246  else theDencity = new G4NuclearFermiDensity(theA, theZ);
247 
248  // GetDencity() accepts only G4ThreeVector so build it:
249  G4ThreeVector aPosition(0.0, 0.0, radius);
250  G4double density = theDencity->GetDensity(aPosition);
251  delete theDencity;
252 
253  G4FermiMomentum *fm = new G4FermiMomentum();
254  fm->Init(theA, theZ);
255  G4double fermiMomentum = fm->GetFermiMomentum(density);
256  delete fm;
257 
258  return sqr(fermiMomentum)/(2 * Mn)
259  + G4CreateNucleus::GetBindingEnergy(theZ, theA)/theA;
260  //+ G4NucleiProperties::GetBindingEnergy(theZ, theA)/theA;
261  */
262 
263  return 0.0;
264 }
Here is the caller graph for this function:

◆ GetNeutronPotential() [2/2]

G4double G4RKFieldIntegrator::GetNeutronPotential ( G4ThreeVector aPosition)
inlinevirtual

Implements G4FieldPropagation.

Definition at line 55 of file G4RKFieldIntegrator.hh.

55 {return GetNeutronPotential(aPosition.mag());}
double mag() const
G4double GetNeutronPotential(G4double radius)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ GetPionPotential() [1/2]

G4double G4RKFieldIntegrator::GetPionPotential ( G4double  radius)
virtual

Implements G4FieldPropagation.

Definition at line 356 of file G4RKFieldIntegrator.cc.

357 {
358  /*
359  //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ);
360  G4double theM = theZ * G4Proton::Proton()->GetPDGMass()
361  + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass()
362  + G4CreateNucleus::GetBindingEnergy(theZ, theA);
363 
364  const G4double Mpi = 139. * MeV; // mass of "pion"
365  G4double mu = (theM * Mpi)/(theM + Mpi);
366 
367  // pion's potential coefficient
368  // V = coeff_pion * nucleus_density
369  G4double coeff_pion = -2.*pi/mu * (1. + Mpi) * a_pion;
370 
371  G4VNuclearDensity *theDencity;
372  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
373  else theDencity = new G4NuclearFermiDensity(theA, theZ);
374 
375  // GetDencity() accepts only G4ThreeVector so build it:
376  G4ThreeVector aPosition(0.0, 0.0, radius);
377  G4double density = theDencity->GetDensity(aPosition);
378  delete theDencity;
379 
380  return coeff_pion * density;
381  */
382 
383  return 0.0;
384 }
Here is the caller graph for this function:

◆ GetPionPotential() [2/2]

G4double G4RKFieldIntegrator::GetPionPotential ( G4ThreeVector aPosition)
inlinevirtual

Implements G4FieldPropagation.

Definition at line 67 of file G4RKFieldIntegrator.hh.

67 {return GetPionPotential(aPosition.mag());}
G4double GetPionPotential(G4double radius)
double mag() const
Here is the call graph for this function:
Here is the caller graph for this function:

◆ GetProtonPotential() [1/2]

G4double G4RKFieldIntegrator::GetProtonPotential ( G4double  radius)
virtual

Implements G4FieldPropagation.

Definition at line 266 of file G4RKFieldIntegrator.cc.

267 {
268  /*
269  // calculate Coulomb barrier value
270  G4double theCoulombBarrier = coulomb * theZ/(1. + G4Pow::GetInstance()->Z13(theA));
271  const G4double Mp = 938.27231 * MeV; // mass of proton
272 
273  G4VNuclearDensity *theDencity;
274  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
275  else theDencity = new G4NuclearFermiDensity(theA, theZ);
276 
277  // GetDencity() accepts only G4ThreeVector so build it:
278  G4ThreeVector aPosition(0.0, 0.0, radius);
279  G4double density = theDencity->GetDensity(aPosition);
280  delete theDencity;
281 
282  G4FermiMomentum *fm = new G4FermiMomentum();
283  fm->Init(theA, theZ);
284  G4double fermiMomentum = fm->GetFermiMomentum(density);
285  delete fm;
286 
287  return sqr(fermiMomentum)/ (2 * Mp)
288  + G4CreateNucleus::GetBindingEnergy(theZ, theA)/theA;
289  //+ G4NucleiProperties::GetBindingEnergy(theZ, theA)/theA
290  + theCoulombBarrier;
291  */
292 
293  return 0.0;
294 }
Here is the caller graph for this function:

◆ GetProtonPotential() [2/2]

G4double G4RKFieldIntegrator::GetProtonPotential ( G4ThreeVector aPosition)
inlinevirtual

Implements G4FieldPropagation.

Definition at line 58 of file G4RKFieldIntegrator.hh.

58 {return GetProtonPotential(aPosition.mag());}
double mag() const
G4double GetProtonPotential(G4double radius)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ Init()

void G4RKFieldIntegrator::Init ( G4int  z,
G4int  a 
)
inlinevirtual

Implements G4FieldPropagation.

Definition at line 51 of file G4RKFieldIntegrator.hh.

51 {theZ = z; theA = a;} // prepare potentials' functions
Here is the call graph for this function:

◆ Integrate()

void G4RKFieldIntegrator::Integrate ( const G4KineticTrackVector theActive,
G4double  theTimeStep 
)
private

Definition at line 210 of file G4RKFieldIntegrator.cc.

211 {
212  for(size_t cParticle = 0; cParticle < theBarions.size(); cParticle++)
213  {
214  G4KineticTrack* pKineticTrack = theBarions[cParticle];
215  pKineticTrack->SetPosition(pKineticTrack->GetPosition() + theTimeStep*pKineticTrack->Get4Momentum().boostVector());
216  }
217 }
const G4ThreeVector & GetPosition() const
void SetPosition(const G4ThreeVector aPosition)
Hep3Vector boostVector() const
const G4LorentzVector & Get4Momentum() const
Here is the call graph for this function:
Here is the caller graph for this function:

◆ operator!=()

int G4RKFieldIntegrator::operator!= ( const G4RKFieldIntegrator ) const
inline

Definition at line 43 of file G4RKFieldIntegrator.hh.

43 {return 1;}
Here is the call graph for this function:

◆ operator=()

const G4RKFieldIntegrator& G4RKFieldIntegrator::operator= ( const G4RKFieldIntegrator )
inline

Definition at line 40 of file G4RKFieldIntegrator.hh.

40 {return *this;}

◆ operator==()

int G4RKFieldIntegrator::operator== ( const G4RKFieldIntegrator ) const
inline

Definition at line 42 of file G4RKFieldIntegrator.hh.

42 {return 1;}

◆ Transport()

void G4RKFieldIntegrator::Transport ( G4KineticTrackVector theActive,
const G4KineticTrackVector theSpectators,
G4double  theTimeStep 
)
virtual

Implements G4FieldPropagation.

Definition at line 45 of file G4RKFieldIntegrator.cc.

46 {
47  (void)theActive;
48  (void)theSpectators;
49  (void)theTimeStep;
50 }
Here is the caller graph for this function:

Member Data Documentation

◆ a_antiproton

const G4double G4RKFieldIntegrator::a_antiproton = 1.53
staticprivate

Definition at line 83 of file G4RKFieldIntegrator.hh.

◆ a_kaon

const G4double G4RKFieldIntegrator::a_kaon = 0.35
staticprivate

Definition at line 81 of file G4RKFieldIntegrator.hh.

◆ a_pion

const G4double G4RKFieldIntegrator::a_pion = 0.35
staticprivate

! for pions it has todiffer from kaons

Definition at line 82 of file G4RKFieldIntegrator.hh.

◆ coulomb

const G4double G4RKFieldIntegrator::coulomb = 1.44 / 1.14 * MeV
staticprivate

Definition at line 80 of file G4RKFieldIntegrator.hh.

◆ theA

G4int G4RKFieldIntegrator::theA
private

Definition at line 75 of file G4RKFieldIntegrator.hh.

◆ theZ

G4int G4RKFieldIntegrator::theZ
private

Definition at line 76 of file G4RKFieldIntegrator.hh.


The documentation for this class was generated from the following files: