77       G4cout << 
"G4LEHadronProtonElastic:ApplyYourself: incident particle: "    80              << 
", Px = " << Px/
GeV << 
" GeV/c"    81              << 
", Py = " << Py/
GeV << 
" GeV/c"    82              << 
", Pz = " << Pz/
GeV << 
" GeV/c" << 
G4endl;
    84              << 
", kinetic energy = " << ek/
GeV << 
" GeV"    85              << 
", mass = " << E0/
GeV << 
" GeV"    86              << 
", charge = " << Q << 
G4endl;
    87       G4cout << 
"G4LEHadronProtonElastic:ApplyYourself: material:" << 
G4endl;
    98       E0 = std::sqrt(std::abs(E02));
   101       G4cout << 
"G4LEHadronProtonElastic:ApplyYourself: total:" << 
G4endl;
   103              << 
", mass = " << E0/
GeV << 
" GeV"   104              << 
", charge = " << Q << 
G4endl;
   118     G4double pseudoMass = std::sqrt(totalEnergy*totalEnergy - P*P);
   125     G4double p = std::sqrt(px*px + py*py + pz*pz);
   130       G4cout << 
"  particle  1 momentum in CM " << px/
GeV << 
" " << py/
GeV << 
" "   136     G4double pxnew = p*std::sin(theta)*std::cos(phi);
   137     G4double pynew = p*std::sin(theta)*std::sin(phi);
   141     if (px*px + py*py > 0) 
   143       G4double cost, sint, ph, cosp, sinp;
   145       sint = (std::sqrt(std::fabs((1-cost)*(1+cost))) 
   146             + std::sqrt(px*px+py*py)/p)/2;
   148       if (std::abs(px) > 0.000001*
GeV) ph = std::atan2(py,px);
   151       px = (cost*cosp*pxnew - sinp*pynew + sint*cosp*pznew);
   152       py = (cost*sinp*pxnew + cosp*pynew + sint*sinp*pznew);
   153       pz = (-sint*pxnew                  + cost*pznew);
   163       G4cout << 
"  particle 1 momentum in CM " << px/
GeV    164              << 
" " << py/
GeV << 
" " << pz/
GeV << 
" " << p/
GeV    175     G4double gammaCM = E1pM2/std::sqrt(E1pM2*E1pM2 - P*P);
   178       G4cout << 
"  betaCM " << betaCMx << 
" " << betaCMy << 
" "   179              << betaCMz << 
" " << betaCM << 
G4endl;
   196     PA[4] = std::sqrt(M1*M1 + p*p);
   198     G4double BETPA  = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
   199     G4double BPGAM  = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
   201     PB[1] = PA[1] + BPGAM  * BETA[1];
   202     PB[2] = PA[2] + BPGAM  * BETA[2];
   203     PB[3] = PA[3] + BPGAM  * BETA[3];
   204     PB[4] = (PA[4] - BETPA) * BETA[4];
   215     PA[4] = std::sqrt(M2*M2 + p*p);
   217     BETPA  = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
   218     BPGAM  = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
   220     PB[1] = PA[1] + BPGAM  * BETA[1];
   221     PB[2] = PA[2] + BPGAM  * BETA[2];
   222     PB[3] = PA[3] + BPGAM  * BETA[3];
   223     PB[4] = (PA[4] - BETPA) * BETA[4];
   228       G4cout << 
"  particle 1 momentum in LAB "    231       G4cout << 
"  particle 2 momentum in LAB "    234       G4cout << 
"  TOTAL momentum in LAB "  
G4DynamicParticle * ReturnTargetParticle() const
 
static const double halfpi
 
void SetMomentum(const G4ThreeVector &momentum)
 
CLHEP::Hep3Vector G4ThreeVector
 
const G4LorentzVector & Get4Momentum() const
 
G4double GetTotalEnergy() const
 
G4double GetTotalMomentum() const
 
G4double GetTotalEnergy() const
 
G4double GetKineticEnergy() const
 
G4ThreeVector GetMomentum() const
 
const G4String & GetParticleName() const
 
G4GLOB_DLL std::ostream G4cout
 
double A(double temperature)
 
static const double twopi
 
static G4Proton * Proton()
 
G4double GetTotalMomentum() const
 
const G4ParticleDefinition * GetDefinition() const
 
void SetEnergyChange(G4double anEnergy)
 
G4double GetKineticEnergy() const
 
const G4ThreeVector & GetMomentumDirection() const
 
G4double GetPDGMass() const
 
G4HadFinalState theParticleChange
 
G4ParticleDefinition * GetDefinition() const
 
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
 
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
 
void SetMomentumChange(const G4ThreeVector &aV)
 
G4double GetPDGCharge() const