48   G4double alphaBeta=0.0, alphaReduced=0.0, betaReduced=0.0,
    49            root1=0.0, root2=0.0, root3=0.0 ;
    51            newton1=0.0, newton2=0.0, newton3=0.0, newton0=0.0,
    52            temp=0.0, rootTemp=0.0 ;
    58   for (i=1;i<=nJacobi;i++)
    62         alphaReduced = 
alpha/nJacobi ;
    63         betaReduced = beta/nJacobi ;
    64         root1 = (1.0+
alpha)*(2.78002/(4.0+nJacobi*nJacobi)+
    65               0.767999*alphaReduced/nJacobi) ;
    66         root2 = 1.0+1.48*alphaReduced+0.96002*betaReduced
    67               + 0.451998*alphaReduced*alphaReduced
    68               + 0.83001*alphaReduced*betaReduced ;
    69         root  = 1.0-root1/root2 ;
    74         root2=1.0+0.06*(nJacobi-8.0)*(1.0+0.12*
alpha)/nJacobi ;
    75         root3=1.0+0.012002*beta*(1.0+0.24997*std::fabs(
alpha))/nJacobi ;
    76         root -= (1.0-root)*root1*root2*root3 ;
    80         root1=(1.67001+0.27998*
alpha)/(1.0+0.37002*
alpha) ;
    81         root2=1.0+0.22*(nJacobi-8.0)/nJacobi ;
    82         root3=1.0+8.0*beta/((6.28001+beta)*nJacobi*nJacobi) ;
    83         root -= (
fAbscissa[0]-root)*root1*root2*root3 ;
    85      else if (i == nJacobi-1)
    87         root1=(1.0+0.235002*beta)/(0.766001+0.118998*beta) ;
    88         root2=1.0/(1.0+0.639002*(nJacobi-4.0)/(1.0+0.71001*(nJacobi-4.0))) ;
    89         root3=1.0/(1.0+20.0*
alpha/((7.5+
alpha)*nJacobi*nJacobi)) ;
    90         root += (root-
fAbscissa[nJacobi-4])*root1*root2*root3 ;
    92      else if (i == nJacobi) 
    94         root1 = (1.0+0.37002*beta)/(1.67001+0.27998*beta) ;
    95         root2 = 1.0/(1.0+0.22*(nJacobi-8.0)/nJacobi) ;
    96         root3 = 1.0/(1.0+8.0*
alpha/((6.28002+
alpha)*nJacobi*nJacobi)) ;
    97         root += (root-
fAbscissa[nJacobi-3])*root1*root2*root3 ;
   103      alphaBeta = 
alpha + beta ;
   104      for (k=1;k<=maxNumber;k++)
   106         temp = 2.0 + alphaBeta ;
   107         newton1 = (
alpha-beta+temp*root)/2.0 ;
   109         for (
G4int j=2;j<=nJacobi;j++)
   113            temp = 2*j+alphaBeta ;
   114            a = 2*j*(j+alphaBeta)*(temp-2.0) ;
   115            b = (temp-1.0)*(
alpha*
alpha-beta*beta+temp*(temp-2.0)*root) ;
   116            c = 2.0*(j-1+
alpha)*(j-1+beta)*temp ;
   117            newton1 = (
b*newton2-
c*newton3)/a ;
   119         newton0 = (nJacobi*(
alpha - beta - temp*root)*newton1 +
   120                2.0*(nJacobi + 
alpha)*(nJacobi + beta)*newton2)/
   121               (temp*(1.0 - root*root)) ;
   123         root = rootTemp - newton1/newton0 ;
   124         if (std::fabs(root-rootTemp) <= 
tolerance)
   131         G4Exception(
"G4GaussJacobiQ::G4GaussJacobiQ()", 
"OutOfRange",
   139                         *temp*std::pow(2.0,alphaBeta)/(newton0*newton2) ;
 static const G4double tolerance
 
G4VGaussianQuadrature(function pFunction)
 
G4double GammaLogarithm(G4double xx)
 
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
 
static const G4double alpha