Geant4  10.02.p03
G4EmStandardPhysics_option1 Class Reference

#include <G4EmStandardPhysics_option1.hh>

Inheritance diagram for G4EmStandardPhysics_option1:
Collaboration diagram for G4EmStandardPhysics_option1:

Public Member Functions

 G4EmStandardPhysics_option1 (G4int ver=1)
 
 G4EmStandardPhysics_option1 (G4int ver, const G4String &name)
 
virtual ~G4EmStandardPhysics_option1 ()
 
virtual void ConstructParticle ()
 
virtual void ConstructProcess ()
 
- Public Member Functions inherited from G4VPhysicsConstructor
 G4VPhysicsConstructor (const G4String &="")
 
 G4VPhysicsConstructor (const G4String &name, G4int physics_type)
 
virtual ~G4VPhysicsConstructor ()
 
void SetPhysicsName (const G4String &="")
 
const G4StringGetPhysicsName () const
 
void SetPhysicsType (G4int)
 
G4int GetPhysicsType () const
 
void SetVerboseLevel (G4int value)
 
G4int GetVerboseLevel () const
 
G4int GetInstanceID () const
 

Private Attributes

G4int verbose
 

Additional Inherited Members

- Static Public Member Functions inherited from G4VPhysicsConstructor
static const G4VPCManagerGetSubInstanceManager ()
 
- Protected Member Functions inherited from G4VPhysicsConstructor
G4bool RegisterProcess (G4VProcess *process, G4ParticleDefinition *particle)
 
G4ParticleTable::G4PTblDicIteratorGetParticleIterator () const
 
- Protected Attributes inherited from G4VPhysicsConstructor
G4int verboseLevel
 
G4String namePhysics
 
G4int typePhysics
 
G4ParticleTabletheParticleTable
 
G4int g4vpcInstanceID
 
- Static Protected Attributes inherited from G4VPhysicsConstructor
static G4RUN_DLL G4VPCManager subInstanceManager
 

Detailed Description

Definition at line 54 of file G4EmStandardPhysics_option1.hh.

Constructor & Destructor Documentation

◆ G4EmStandardPhysics_option1() [1/2]

G4EmStandardPhysics_option1::G4EmStandardPhysics_option1 ( G4int  ver = 1)

Definition at line 115 of file G4EmStandardPhysics_option1.cc.

116  : G4VPhysicsConstructor("G4EmStandard_opt1"), verbose(ver)
117 {
119  param->SetDefaults();
120  param->SetVerbose(verbose);
121  param->SetApplyCuts(true);
122  param->SetMscRangeFactor(0.2);
125 }
void SetApplyCuts(G4bool val)
void SetVerbose(G4int val)
void SetMscStepLimitType(G4MscStepLimitType val)
void SetMscRangeFactor(G4double val)
static G4EmParameters * Instance()
G4VPhysicsConstructor(const G4String &="")
Here is the call graph for this function:

◆ G4EmStandardPhysics_option1() [2/2]

G4EmStandardPhysics_option1::G4EmStandardPhysics_option1 ( G4int  ver,
const G4String name 
)

Definition at line 129 of file G4EmStandardPhysics_option1.cc.

131  : G4VPhysicsConstructor("G4EmStandard_opt1"), verbose(ver)
132 {
134  param->SetDefaults();
135  param->SetVerbose(verbose);
136  param->SetApplyCuts(true);
137  param->SetMscRangeFactor(0.2);
140 }
void SetApplyCuts(G4bool val)
void SetVerbose(G4int val)
void SetMscStepLimitType(G4MscStepLimitType val)
void SetMscRangeFactor(G4double val)
static G4EmParameters * Instance()
G4VPhysicsConstructor(const G4String &="")
Here is the call graph for this function:

◆ ~G4EmStandardPhysics_option1()

G4EmStandardPhysics_option1::~G4EmStandardPhysics_option1 ( )
virtual

Definition at line 144 of file G4EmStandardPhysics_option1.cc.

145 {}

Member Function Documentation

◆ ConstructParticle()

void G4EmStandardPhysics_option1::ConstructParticle ( void  )
virtual

Implements G4VPhysicsConstructor.

Definition at line 149 of file G4EmStandardPhysics_option1.cc.

150 {
151  // gamma
152  G4Gamma::Gamma();
153 
154  // leptons
159 
160  // mesons
165 
166  // barions
169 
170  // ions
173  G4He3::He3();
174  G4Alpha::Alpha();
176 
177  // dna
178  G4EmModelActivator mact;
179  mact.ConstructParticle();
180 }
static G4KaonPlus * KaonPlusDefinition()
Definition: G4KaonPlus.cc:108
static G4GenericIon * GenericIonDefinition()
Definition: G4GenericIon.cc:88
static G4MuonPlus * MuonPlus()
Definition: G4MuonPlus.cc:99
static G4KaonMinus * KaonMinusDefinition()
Definition: G4KaonMinus.cc:108
static G4AntiProton * AntiProton()
Definition: G4AntiProton.cc:93
static G4PionMinus * PionMinusDefinition()
Definition: G4PionMinus.cc:93
static G4Triton * Triton()
Definition: G4Triton.cc:95
static G4PionPlus * PionPlusDefinition()
Definition: G4PionPlus.cc:93
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
static G4Deuteron * Deuteron()
Definition: G4Deuteron.cc:94
static G4Positron * Positron()
Definition: G4Positron.cc:94
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:100
static G4Electron * Electron()
Definition: G4Electron.cc:94
static G4Alpha * Alpha()
Definition: G4Alpha.cc:89
static G4He3 * He3()
Definition: G4He3.cc:94
Here is the call graph for this function:

◆ ConstructProcess()

void G4EmStandardPhysics_option1::ConstructProcess ( void  )
virtual

Implements G4VPhysicsConstructor.

Definition at line 184 of file G4EmStandardPhysics_option1.cc.

185 {
186  if(verbose > 1) {
187  G4cout << "### " << GetPhysicsName() << " Construct Processes " << G4endl;
188  }
190 
191  // muon & hadron bremsstrahlung and pair production
200 
201  // muon & hadron multiple scattering
203  mumsc->AddEmModel(0, new G4WentzelVIModel());
205 
207  pimsc->AddEmModel(0, new G4WentzelVIModel());
209 
211  kmsc->AddEmModel(0, new G4WentzelVIModel());
213 
215  pmsc->AddEmModel(0, new G4WentzelVIModel());
217 
218  G4hMultipleScattering* hmsc = new G4hMultipleScattering("ionmsc");
219 
220  // high energy limit for e+- scattering models and bremsstrahlung
221  G4double highEnergyLimit = 100*MeV;
222 
223  // Add standard EM Processes
224  auto myParticleIterator=GetParticleIterator();
225  myParticleIterator->reset();
226  while( (*myParticleIterator)() ){
227  G4ParticleDefinition* particle = myParticleIterator->value();
228  G4String particleName = particle->GetParticleName();
229 
230  if (particleName == "gamma") {
231 
232  ph->RegisterProcess(new G4PhotoElectricEffect(), particle);
233  ph->RegisterProcess(new G4ComptonScattering(), particle);
234  ph->RegisterProcess(new G4GammaConversion(), particle);
235 
236  } else if (particleName == "e-") {
237 
238  G4eIonisation* eioni = new G4eIonisation();
239  eioni->SetStepFunction(0.8, 1.0*mm);
240 
242  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
243  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
244  msc1->SetNewDisplacementFlag(false);
245  msc1->SetHighEnergyLimit(highEnergyLimit);
246  msc2->SetLowEnergyLimit(highEnergyLimit);
247  msc->AddEmModel(0, msc1);
248  msc->AddEmModel(0, msc2);
249 
252  ss->SetEmModel(ssm, 1);
253  ss->SetMinKinEnergy(highEnergyLimit);
254  ssm->SetLowEnergyLimit(highEnergyLimit);
255  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
256 
257  ph->RegisterProcess(msc, particle);
258  ph->RegisterProcess(eioni, particle);
259  ph->RegisterProcess(new G4eBremsstrahlung(), particle);
260  ph->RegisterProcess(ss, particle);
261 
262  } else if (particleName == "e+") {
263 
264  G4eIonisation* eioni = new G4eIonisation();
265  eioni->SetStepFunction(0.8, 1.0*mm);
266 
268  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
269  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
270  msc1->SetNewDisplacementFlag(false);
271  msc1->SetHighEnergyLimit(highEnergyLimit);
272  msc2->SetLowEnergyLimit(highEnergyLimit);
273  msc->AddEmModel(0, msc1);
274  msc->AddEmModel(0, msc2);
275 
278  ss->SetEmModel(ssm, 1);
279  ss->SetMinKinEnergy(highEnergyLimit);
280  ssm->SetLowEnergyLimit(highEnergyLimit);
281  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
282 
283  ph->RegisterProcess(msc, particle);
284  ph->RegisterProcess(eioni, particle);
285  ph->RegisterProcess(new G4eBremsstrahlung(), particle);
286  ph->RegisterProcess(new G4eplusAnnihilation(), particle);
287  ph->RegisterProcess(ss, particle);
288 
289  } else if (particleName == "mu+" ||
290  particleName == "mu-" ) {
291 
292  ph->RegisterProcess(mumsc, particle);
293  ph->RegisterProcess(new G4MuIonisation(), particle);
294  ph->RegisterProcess(mub, particle);
295  ph->RegisterProcess(mup, particle);
296  ph->RegisterProcess(muss, particle);
297 
298  } else if (particleName == "alpha" ||
299  particleName == "He3" ) {
300 
301  //ph->RegisterProcess(hmsc, particle);
302  ph->RegisterProcess(new G4hMultipleScattering(), particle);
303  ph->RegisterProcess(new G4ionIonisation(), particle);
304 
305  } else if (particleName == "GenericIon") {
306 
307  ph->RegisterProcess(hmsc, particle);
308  ph->RegisterProcess(new G4ionIonisation(), particle);
309 
310  } else if (particleName == "pi+" ||
311  particleName == "pi-" ) {
312 
313  //G4hMultipleScattering* pimsc = new G4hMultipleScattering();
314  ph->RegisterProcess(pimsc, particle);
315  ph->RegisterProcess(new G4hIonisation(), particle);
316  ph->RegisterProcess(pib, particle);
317  ph->RegisterProcess(pip, particle);
318  ph->RegisterProcess(piss, particle);
319 
320  } else if (particleName == "kaon+" ||
321  particleName == "kaon-" ) {
322 
323  //G4hMultipleScattering* kmsc = new G4hMultipleScattering();
324  ph->RegisterProcess(kmsc, particle);
325  ph->RegisterProcess(new G4hIonisation(), particle);
326  ph->RegisterProcess(kb, particle);
327  ph->RegisterProcess(kp, particle);
328  ph->RegisterProcess(kss, particle);
329 
330  // } else if (particleName == "proton" ) {
331  } else if (particleName == "proton" ||
332  particleName == "anti_proton") {
333 
334  //G4hMultipleScattering* pmsc = new G4hMultipleScattering();
335  ph->RegisterProcess(pmsc, particle);
336  ph->RegisterProcess(new G4hIonisation(), particle);
337  ph->RegisterProcess(pb, particle);
338  ph->RegisterProcess(pp, particle);
339  ph->RegisterProcess(pss, particle);
340 
341  } else if (particleName == "B+" ||
342  particleName == "B-" ||
343  particleName == "D+" ||
344  particleName == "D-" ||
345  particleName == "Ds+" ||
346  particleName == "Ds-" ||
347  particleName == "anti_He3" ||
348  particleName == "anti_alpha" ||
349  particleName == "anti_deuteron" ||
350  particleName == "anti_lambda_c+" ||
351  particleName == "anti_omega-" ||
352  particleName == "anti_sigma_c+" ||
353  particleName == "anti_sigma_c++" ||
354  particleName == "anti_sigma+" ||
355  particleName == "anti_sigma-" ||
356  particleName == "anti_triton" ||
357  particleName == "anti_xi_c+" ||
358  particleName == "anti_xi-" ||
359  particleName == "deuteron" ||
360  particleName == "lambda_c+" ||
361  particleName == "omega-" ||
362  particleName == "sigma_c+" ||
363  particleName == "sigma_c++" ||
364  particleName == "sigma+" ||
365  particleName == "sigma-" ||
366  particleName == "tau+" ||
367  particleName == "tau-" ||
368  particleName == "triton" ||
369  particleName == "xi_c+" ||
370  particleName == "xi-" ) {
371 
372  ph->RegisterProcess(hmsc, particle);
373  ph->RegisterProcess(new G4hIonisation(), particle);
374  }
375  }
376 
377  // Deexcitation
378  //
381 
382  G4EmModelActivator mact;
383  mact.ConstructProcess();
384 }
static const double MeV
Definition: G4SIunits.hh:211
static G4LossTableManager * Instance()
void SetNewDisplacementFlag(G4bool)
void SetStepFunction(G4double v1, G4double v2)
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:725
void SetEmModel(G4VEmModel *, G4int index=1)
const G4String & GetParticleName() const
const G4String & GetPhysicsName() const
G4GLOB_DLL std::ostream G4cout
G4bool RegisterProcess(G4VProcess *process, G4ParticleDefinition *particle)
void SetActivationLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:746
void AddEmModel(G4int order, G4VEmModel *, const G4Region *region=0)
static G4PhysicsListHelper * GetPhysicsListHelper()
#define G4endl
Definition: G4ios.hh:61
void SetMinKinEnergy(G4double e)
G4ParticleTable::G4PTblDicIterator * GetParticleIterator() const
double G4double
Definition: G4Types.hh:76
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:732
static const double mm
Definition: G4SIunits.hh:114
void SetAtomDeexcitation(G4VAtomDeexcitation *)
Here is the call graph for this function:

Member Data Documentation

◆ verbose

G4int G4EmStandardPhysics_option1::verbose
private

Definition at line 69 of file G4EmStandardPhysics_option1.hh.


The documentation for this class was generated from the following files: