Geant4  10.02.p03
G4EmLivermorePolarizedPhysics Class Reference

#include <G4EmLivermorePolarizedPhysics.hh>

Inheritance diagram for G4EmLivermorePolarizedPhysics:
Collaboration diagram for G4EmLivermorePolarizedPhysics:

Public Member Functions

 G4EmLivermorePolarizedPhysics (G4int ver=1)
 
 G4EmLivermorePolarizedPhysics (G4int ver, const G4String &)
 
virtual ~G4EmLivermorePolarizedPhysics ()
 
virtual void ConstructParticle ()
 
virtual void ConstructProcess ()
 
- Public Member Functions inherited from G4VPhysicsConstructor
 G4VPhysicsConstructor (const G4String &="")
 
 G4VPhysicsConstructor (const G4String &name, G4int physics_type)
 
virtual ~G4VPhysicsConstructor ()
 
void SetPhysicsName (const G4String &="")
 
const G4StringGetPhysicsName () const
 
void SetPhysicsType (G4int)
 
G4int GetPhysicsType () const
 
void SetVerboseLevel (G4int value)
 
G4int GetVerboseLevel () const
 
G4int GetInstanceID () const
 

Private Attributes

G4int verbose
 

Additional Inherited Members

- Static Public Member Functions inherited from G4VPhysicsConstructor
static const G4VPCManagerGetSubInstanceManager ()
 
- Protected Member Functions inherited from G4VPhysicsConstructor
G4bool RegisterProcess (G4VProcess *process, G4ParticleDefinition *particle)
 
G4ParticleTable::G4PTblDicIteratorGetParticleIterator () const
 
- Protected Attributes inherited from G4VPhysicsConstructor
G4int verboseLevel
 
G4String namePhysics
 
G4int typePhysics
 
G4ParticleTabletheParticleTable
 
G4int g4vpcInstanceID
 
- Static Protected Attributes inherited from G4VPhysicsConstructor
static G4RUN_DLL G4VPCManager subInstanceManager
 

Detailed Description

Definition at line 36 of file G4EmLivermorePolarizedPhysics.hh.

Constructor & Destructor Documentation

◆ G4EmLivermorePolarizedPhysics() [1/2]

G4EmLivermorePolarizedPhysics::G4EmLivermorePolarizedPhysics ( G4int  ver = 1)

Definition at line 127 of file G4EmLivermorePolarizedPhysics.cc.

128  : G4VPhysicsConstructor("G4EmLivermorePolarizedPhysics"), verbose(ver)
129 {
131  param->SetDefaults();
132  param->SetVerbose(verbose);
133  param->SetMinEnergy(100*eV);
134  param->SetMaxEnergy(10*TeV);
135  param->SetLowestElectronEnergy(100*eV);
136  param->SetNumberOfBinsPerDecade(20);
138  param->SetFluo(true);
140 }
void SetVerbose(G4int val)
void SetLowestElectronEnergy(G4double val)
void SetMaxEnergy(G4double val)
void SetNumberOfBinsPerDecade(G4int val)
static const double eV
Definition: G4SIunits.hh:212
void SetMinEnergy(G4double val)
static G4EmParameters * Instance()
G4VPhysicsConstructor(const G4String &="")
void ActivateAngularGeneratorForIonisation(G4bool val)
static const double TeV
Definition: G4SIunits.hh:215
void SetFluo(G4bool val)
Here is the call graph for this function:

◆ G4EmLivermorePolarizedPhysics() [2/2]

G4EmLivermorePolarizedPhysics::G4EmLivermorePolarizedPhysics ( G4int  ver,
const G4String  
)

Definition at line 144 of file G4EmLivermorePolarizedPhysics.cc.

145  : G4VPhysicsConstructor("G4EmLivermorePolarizedPhysics"), verbose(ver)
146 {
148  param->SetDefaults();
149  param->SetVerbose(verbose);
150  param->SetMinEnergy(100*eV);
151  param->SetMaxEnergy(10*TeV);
152  param->SetNumberOfBinsPerDecade(20);
154  param->SetFluo(true);
156 }
void SetVerbose(G4int val)
void SetMaxEnergy(G4double val)
void SetNumberOfBinsPerDecade(G4int val)
static const double eV
Definition: G4SIunits.hh:212
void SetMinEnergy(G4double val)
static G4EmParameters * Instance()
G4VPhysicsConstructor(const G4String &="")
void ActivateAngularGeneratorForIonisation(G4bool val)
static const double TeV
Definition: G4SIunits.hh:215
void SetFluo(G4bool val)
Here is the call graph for this function:

◆ ~G4EmLivermorePolarizedPhysics()

G4EmLivermorePolarizedPhysics::~G4EmLivermorePolarizedPhysics ( )
virtual

Definition at line 160 of file G4EmLivermorePolarizedPhysics.cc.

161 {}

Member Function Documentation

◆ ConstructParticle()

void G4EmLivermorePolarizedPhysics::ConstructParticle ( void  )
virtual

Implements G4VPhysicsConstructor.

Definition at line 165 of file G4EmLivermorePolarizedPhysics.cc.

166 {
167  // gamma
168  G4Gamma::Gamma();
169 
170  // leptons
175 
176  // mesons
181 
182  // baryons
185 
186  // ions
189  G4He3::He3();
190  G4Alpha::Alpha();
192 
193  // dna
194  G4EmModelActivator mact;
195  mact.ConstructParticle();
196 }
static G4KaonPlus * KaonPlusDefinition()
Definition: G4KaonPlus.cc:108
static G4GenericIon * GenericIonDefinition()
Definition: G4GenericIon.cc:88
static G4MuonPlus * MuonPlus()
Definition: G4MuonPlus.cc:99
static G4KaonMinus * KaonMinusDefinition()
Definition: G4KaonMinus.cc:108
static G4AntiProton * AntiProton()
Definition: G4AntiProton.cc:93
static G4PionMinus * PionMinusDefinition()
Definition: G4PionMinus.cc:93
static G4Triton * Triton()
Definition: G4Triton.cc:95
static G4PionPlus * PionPlusDefinition()
Definition: G4PionPlus.cc:93
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
static G4Deuteron * Deuteron()
Definition: G4Deuteron.cc:94
static G4Positron * Positron()
Definition: G4Positron.cc:94
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:100
static G4Electron * Electron()
Definition: G4Electron.cc:94
static G4Alpha * Alpha()
Definition: G4Alpha.cc:89
static G4He3 * He3()
Definition: G4He3.cc:94
Here is the call graph for this function:

◆ ConstructProcess()

void G4EmLivermorePolarizedPhysics::ConstructProcess ( void  )
virtual

Implements G4VPhysicsConstructor.

Definition at line 200 of file G4EmLivermorePolarizedPhysics.cc.

201 {
202  if(verbose > 1) {
203  G4cout << "### " << GetPhysicsName() << " Construct Processes " << G4endl;
204  }
206 
207  // muon & hadron bremsstrahlung and pair production
216 
217  // muon & hadron multiple scattering
219  mumsc->AddEmModel(0, new G4WentzelVIModel());
221  pimsc->AddEmModel(0, new G4WentzelVIModel());
223  kmsc->AddEmModel(0, new G4WentzelVIModel());
225  pmsc->AddEmModel(0, new G4WentzelVIModel());
226  G4hMultipleScattering* hmsc = new G4hMultipleScattering("ionmsc");
227 
228  // high energy limit for e+- scattering models
229  G4double highEnergyLimit = 100*MeV;
230 
231  // nuclear stopping
232  G4NuclearStopping* pnuc = new G4NuclearStopping();
233 
234  // Add Livermore EM Processes
235  auto myParticleIterator=GetParticleIterator();
236  myParticleIterator->reset();
237 
238  while( (*myParticleIterator)() ){
239 
240  G4ParticleDefinition* particle = myParticleIterator->value();
241  G4String particleName = particle->GetParticleName();
242 
243  //Applicability range for Livermore models
244  //for higher energies, the Standard models are used
245  G4double LivermoreHighEnergyLimit = GeV;
246 
247  if (particleName == "gamma") {
248 
249  G4PhotoElectricEffect* thePhotoElectricEffect = new G4PhotoElectricEffect();
251  theLivermorePhotoElectricModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
252  thePhotoElectricEffect->AddEmModel(0, theLivermorePhotoElectricModel);
253  ph->RegisterProcess(thePhotoElectricEffect, particle);
254 
255  G4ComptonScattering* theComptonScattering = new G4ComptonScattering();
256  G4LivermorePolarizedComptonModel* theLivermoreComptonModel = new G4LivermorePolarizedComptonModel();
257  theLivermoreComptonModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
258  theComptonScattering->AddEmModel(0, theLivermoreComptonModel);
259  ph->RegisterProcess(theComptonScattering, particle);
260 
261  G4GammaConversion* theGammaConversion = new G4GammaConversion();
263  theLivermoreGammaConversionModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
264  theGammaConversion->AddEmModel(0, theLivermoreGammaConversionModel);
265  ph->RegisterProcess(theGammaConversion, particle);
266 
267  G4RayleighScattering* theRayleigh = new G4RayleighScattering();
269  theRayleighModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
270  theRayleigh->AddEmModel(0, theRayleighModel);
271  ph->RegisterProcess(theRayleigh, particle);
272 
273  } else if (particleName == "e-") {
274 
275  // multiple scattering
278  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
279  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
280  msc1->SetHighEnergyLimit(highEnergyLimit);
281  msc2->SetLowEnergyLimit(highEnergyLimit);
282  msc->AddEmModel(0, msc1);
283  msc->AddEmModel(0, msc2);
284 
287  ss->SetEmModel(ssm, 1);
288  ss->SetMinKinEnergy(highEnergyLimit);
289  ssm->SetLowEnergyLimit(highEnergyLimit);
290  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
291  ph->RegisterProcess(msc, particle);
292  ph->RegisterProcess(ss, particle);
293 
294  // Ionisation
295  G4eIonisation* eIoni = new G4eIonisation();
296  G4LivermoreIonisationModel* theIoniLivermore = new
298  theIoniLivermore->SetHighEnergyLimit(0.1*MeV);
299  eIoni->AddEmModel(0, theIoniLivermore, new G4UniversalFluctuation() );
300  eIoni->SetStepFunction(0.2, 100*um); //
301  ph->RegisterProcess(eIoni, particle);
302 
303  // Bremsstrahlung from standard
304  G4eBremsstrahlung* eBrem = new G4eBremsstrahlung();
305  ph->RegisterProcess(eBrem, particle);
306 
307  } else if (particleName == "e+") {
308 
309  // multiple scattering
312  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
313  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
314  msc1->SetHighEnergyLimit(highEnergyLimit);
315  msc2->SetLowEnergyLimit(highEnergyLimit);
316  msc->AddEmModel(0, msc1);
317  msc->AddEmModel(0, msc2);
318 
321  ss->SetEmModel(ssm, 1);
322  ss->SetMinKinEnergy(highEnergyLimit);
323  ssm->SetLowEnergyLimit(highEnergyLimit);
324  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
325 
326  // Ionisation
327  G4eIonisation* eIoni = new G4eIonisation();
328  eIoni->SetStepFunction(0.2, 100*um);
329 
330  ph->RegisterProcess(msc, particle);
331  ph->RegisterProcess(eIoni, particle);
332  ph->RegisterProcess(new G4eBremsstrahlung(), particle);
333  ph->RegisterProcess(new G4eplusAnnihilation(), particle);
334  ph->RegisterProcess(ss, particle);
335 
336  } else if (particleName == "mu+" ||
337  particleName == "mu-" ) {
338 
339  G4MuIonisation* muIoni = new G4MuIonisation();
340  muIoni->SetStepFunction(0.2, 50*um);
341 
342  ph->RegisterProcess(mumsc, particle);
343  ph->RegisterProcess(muIoni, particle);
344  ph->RegisterProcess(mub, particle);
345  ph->RegisterProcess(mup, particle);
346  ph->RegisterProcess(new G4CoulombScattering(), particle);
347 
348  } else if (particleName == "alpha" ||
349  particleName == "He3" ) {
350 
351  // Identical to G4EmStandardPhysics_option3
352 
354  G4ionIonisation* ionIoni = new G4ionIonisation();
355  ionIoni->SetStepFunction(0.1, 10*um);
356 
357  ph->RegisterProcess(msc, particle);
358  ph->RegisterProcess(ionIoni, particle);
359  ph->RegisterProcess(pnuc, particle);
360 
361  } else if (particleName == "GenericIon") {
362 
363  // Identical to G4EmStandardPhysics_option3
364 
365  G4ionIonisation* ionIoni = new G4ionIonisation();
366  ionIoni->SetEmModel(new G4IonParametrisedLossModel());
367  ionIoni->SetStepFunction(0.1, 1*um);
368 
369  ph->RegisterProcess(hmsc, particle);
370  ph->RegisterProcess(ionIoni, particle);
371  ph->RegisterProcess(pnuc, particle);
372 
373  } else if (particleName == "pi+" ||
374  particleName == "pi-" ) {
375 
376  //G4hMultipleScattering* pimsc = new G4hMultipleScattering();
377  G4hIonisation* hIoni = new G4hIonisation();
378  hIoni->SetStepFunction(0.2, 50*um);
379 
380  ph->RegisterProcess(pimsc, particle);
381  ph->RegisterProcess(hIoni, particle);
382  ph->RegisterProcess(pib, particle);
383  ph->RegisterProcess(pip, particle);
384  ph->RegisterProcess(new G4CoulombScattering(), particle);
385 
386  } else if (particleName == "kaon+" ||
387  particleName == "kaon-" ) {
388 
389  //G4hMultipleScattering* kmsc = new G4hMultipleScattering();
390  G4hIonisation* hIoni = new G4hIonisation();
391  hIoni->SetStepFunction(0.2, 50*um);
392 
393  ph->RegisterProcess(kmsc, particle);
394  ph->RegisterProcess(hIoni, particle);
395  ph->RegisterProcess(kb, particle);
396  ph->RegisterProcess(kp, particle);
397  ph->RegisterProcess(new G4CoulombScattering(), particle);
398 
399  } else if (particleName == "proton" ||
400  particleName == "anti_proton") {
401 
402  //G4hMultipleScattering* pmsc = new G4hMultipleScattering();
403  G4hIonisation* hIoni = new G4hIonisation();
404  hIoni->SetStepFunction(0.2, 50*um);
405 
406  ph->RegisterProcess(pmsc, particle);
407  ph->RegisterProcess(hIoni, particle);
408  ph->RegisterProcess(pb, particle);
409  ph->RegisterProcess(pp, particle);
410  ph->RegisterProcess(pnuc, particle);
411  ph->RegisterProcess(new G4CoulombScattering(), particle);
412 
413  } else if (particleName == "B+" ||
414  particleName == "B-" ||
415  particleName == "D+" ||
416  particleName == "D-" ||
417  particleName == "Ds+" ||
418  particleName == "Ds-" ||
419  particleName == "anti_He3" ||
420  particleName == "anti_alpha" ||
421  particleName == "anti_deuteron" ||
422  particleName == "anti_lambda_c+" ||
423  particleName == "anti_omega-" ||
424  particleName == "anti_sigma_c+" ||
425  particleName == "anti_sigma_c++" ||
426  particleName == "anti_sigma+" ||
427  particleName == "anti_sigma-" ||
428  particleName == "anti_triton" ||
429  particleName == "anti_xi_c+" ||
430  particleName == "anti_xi-" ||
431  particleName == "deuteron" ||
432  particleName == "lambda_c+" ||
433  particleName == "omega-" ||
434  particleName == "sigma_c+" ||
435  particleName == "sigma_c++" ||
436  particleName == "sigma+" ||
437  particleName == "sigma-" ||
438  particleName == "tau+" ||
439  particleName == "tau-" ||
440  particleName == "triton" ||
441  particleName == "xi_c+" ||
442  particleName == "xi-" ) {
443 
444  // Identical to G4EmStandardPhysics_option3
445 
446  ph->RegisterProcess(hmsc, particle);
447  ph->RegisterProcess(new G4hIonisation(), particle);
448  ph->RegisterProcess(pnuc, particle);
449  }
450  }
451 
452  // Nuclear stopping
453  pnuc->SetMaxKinEnergy(MeV);
454 
455  // Deexcitation
456  //
459 
460  G4EmModelActivator mact;
461  mact.ConstructProcess();
462 }
static const double MeV
Definition: G4SIunits.hh:211
static G4LossTableManager * Instance()
void SetStepFunction(G4double v1, G4double v2)
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:725
void SetEmModel(G4VEmModel *, G4int index=1)
const G4String & GetParticleName() const
const G4String & GetPhysicsName() const
G4GLOB_DLL std::ostream G4cout
G4bool RegisterProcess(G4VProcess *process, G4ParticleDefinition *particle)
static const double GeV
Definition: G4SIunits.hh:214
void AddEmModel(G4int, G4VEmModel *, G4VEmFluctuationModel *fluc=0, const G4Region *region=0)
void SetActivationLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:746
void SetMaxKinEnergy(G4double e)
void AddEmModel(G4int, G4VEmModel *, const G4Region *region=0)
void AddEmModel(G4int order, G4VEmModel *, const G4Region *region=0)
static G4PhysicsListHelper * GetPhysicsListHelper()
void SetEmModel(G4VEmModel *, G4int index=1)
static const double um
Definition: G4SIunits.hh:112
#define G4endl
Definition: G4ios.hh:61
void SetMinKinEnergy(G4double e)
G4ParticleTable::G4PTblDicIterator * GetParticleIterator() const
double G4double
Definition: G4Types.hh:76
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:732
void SetAtomDeexcitation(G4VAtomDeexcitation *)
void SetStepLimitType(G4MscStepLimitType val)
Here is the call graph for this function:

Member Data Documentation

◆ verbose

G4int G4EmLivermorePolarizedPhysics::verbose
private

Definition at line 50 of file G4EmLivermorePolarizedPhysics.hh.


The documentation for this class was generated from the following files: