Geant4  10.02.p03
G4ChipsAntiBaryonInelasticXS Class Reference

#include <G4ChipsAntiBaryonInelasticXS.hh>

Inheritance diagram for G4ChipsAntiBaryonInelasticXS:
Collaboration diagram for G4ChipsAntiBaryonInelasticXS:

Public Member Functions

 G4ChipsAntiBaryonInelasticXS ()
 
 ~G4ChipsAntiBaryonInelasticXS ()
 
virtual void CrossSectionDescription (std::ostream &) const
 
virtual G4bool IsIsoApplicable (const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
 
virtual G4double GetIsoCrossSection (const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
 
virtual G4double GetChipsCrossSection (G4double momentum, G4int Z, G4int N, G4int pdg)
 
- Public Member Functions inherited from G4VCrossSectionDataSet
 G4VCrossSectionDataSet (const G4String &nam="")
 
virtual ~G4VCrossSectionDataSet ()
 
virtual G4bool IsElementApplicable (const G4DynamicParticle *, G4int Z, const G4Material *mat=0)
 
G4double GetCrossSection (const G4DynamicParticle *, const G4Element *, const G4Material *mat=0)
 
G4double ComputeCrossSection (const G4DynamicParticle *, const G4Element *, const G4Material *mat=0)
 
virtual G4double GetElementCrossSection (const G4DynamicParticle *, G4int Z, const G4Material *mat=0)
 
virtual G4IsotopeSelectIsotope (const G4Element *, G4double kinEnergy)
 
virtual void BuildPhysicsTable (const G4ParticleDefinition &)
 
virtual void DumpPhysicsTable (const G4ParticleDefinition &)
 
virtual G4int GetVerboseLevel () const
 
virtual void SetVerboseLevel (G4int value)
 
G4double GetMinKinEnergy () const
 
void SetMinKinEnergy (G4double value)
 
G4double GetMaxKinEnergy () const
 
void SetMaxKinEnergy (G4double value)
 
const G4StringGetName () const
 

Static Public Member Functions

static const char * Default_Name ()
 

Private Member Functions

G4double CalculateCrossSection (G4int F, G4int I, G4int PDG, G4int Z, G4int N, G4double Momentum)
 
G4double CrossSectionLin (G4int targZ, G4int targN, G4double P)
 
G4double CrossSectionLog (G4int targZ, G4int targN, G4double lP)
 
G4double CrossSectionFormula (G4int targZ, G4int targN, G4double P, G4double lP)
 
G4double EquLinearFit (G4double X, G4int N, G4double X0, G4double DX, G4double *Y)
 

Private Attributes

G4doublelastLEN
 
G4doublelastHEN
 
G4int lastN
 
G4int lastZ
 
G4double lastP
 
G4double lastTH
 
G4double lastCS
 
G4int lastI
 
std::vector< G4double * > * LEN
 
std::vector< G4double * > * HEN
 
G4int j
 
std::vector< G4intcolN
 
std::vector< G4intcolZ
 
std::vector< G4doublecolP
 
std::vector< G4doublecolTH
 
std::vector< G4doublecolCS
 

Additional Inherited Members

- Protected Member Functions inherited from G4VCrossSectionDataSet
void SetName (const G4String &)
 
- Protected Attributes inherited from G4VCrossSectionDataSet
G4int verboseLevel
 

Detailed Description

Definition at line 44 of file G4ChipsAntiBaryonInelasticXS.hh.

Constructor & Destructor Documentation

◆ G4ChipsAntiBaryonInelasticXS()

G4ChipsAntiBaryonInelasticXS::G4ChipsAntiBaryonInelasticXS ( )

Definition at line 62 of file G4ChipsAntiBaryonInelasticXS.cc.

63 {
64  lastLEN=0; // Pointer to lastArray of LowEn CS
65  lastHEN=0; // Pointer to lastArray of HighEn CS
66  lastN=0; // The last N of calculated nucleus
67  lastZ=0; // The last Z of calculated nucleus
68  lastP=0.; // Last used Cross Section Momentum
69  lastTH=0.; // Last threshold momentum
70  lastCS=0.; // Last value of the Cross Section
71  lastI=0; // The last position in the DAMDB
72  LEN = new std::vector<G4double*>;
73  HEN = new std::vector<G4double*>;
74 }
G4VCrossSectionDataSet(const G4String &nam="")

◆ ~G4ChipsAntiBaryonInelasticXS()

G4ChipsAntiBaryonInelasticXS::~G4ChipsAntiBaryonInelasticXS ( )

Definition at line 76 of file G4ChipsAntiBaryonInelasticXS.cc.

77 {
78  G4int lens=LEN->size();
79  for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i];
80  delete LEN;
81  G4int hens=HEN->size();
82  for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i];
83  delete HEN;
84 }
int G4int
Definition: G4Types.hh:78

Member Function Documentation

◆ CalculateCrossSection()

G4double G4ChipsAntiBaryonInelasticXS::CalculateCrossSection ( G4int  F,
G4int  I,
G4int  PDG,
G4int  Z,
G4int  N,
G4double  Momentum 
)
private

Definition at line 227 of file G4ChipsAntiBaryonInelasticXS.cc.

229 {
230  static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
231  static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
232  static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
233  static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
234  static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
235  static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
236  static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
237  static const G4int nH=224; // A#of HEN points in lnE
238  static const G4double milP=G4Log(Pmin);// Low logarithm energy for the HEN part
239  static const G4double malP=G4Log(Pmax);// High logarithm energy (each 2.75 percent)
240  static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
241  static const G4double milPG=G4Log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
242  G4double sigma=0.;
243  if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
244  //G4double A=targN+targZ; // A of the target
245  if(F<=0) // This isotope was not the last used isotop
246  {
247  if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
248  {
249  G4int sync=LEN->size();
250  if(sync<=I) G4cerr<<"*!*G4QPiMinusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl;
251  lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
252  lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
253  }
254  else // This isotope wasn't calculated before => CREATE
255  {
256  lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
257  lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
258  // --- Instead of making a separate function ---
259  G4double P=THmiG; // Table threshold in GeV/c
260  for(G4int k=0; k<nL; k++)
261  {
262  lastLEN[k] = CrossSectionLin(targZ, targN, P);
263  P+=dPG;
264  }
265  G4double lP=milPG;
266  for(G4int n=0; n<nH; n++)
267  {
268  lastHEN[n] = CrossSectionLog(targZ, targN, lP);
269  lP+=dlP;
270  }
271  // --- End of possible separate function
272  // *** The synchronization check ***
273  G4int sync=LEN->size();
274  if(sync!=I)
275  {
276  G4cerr<<"***G4QPiMinusNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
277  <<", N="<<targN<<", F="<<F<<G4endl;
278  //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow");
279  }
280  LEN->push_back(lastLEN); // remember the Low Energy Table
281  HEN->push_back(lastHEN); // remember the High Energy Table
282  } // End of creation of the new set of parameters
283  } // End of parameters udate
284  // =-------------------= NOW the Magic Formula =--------------------=
285  if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
286  else if (Momentum<Pmin) // High Energy region
287  {
288  sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
289  }
290  else if (Momentum<Pmax) // High Energy region
291  {
292  G4double lP=G4Log(Momentum);
293  sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
294  }
295  else // UHE region (calculation, not frequent)
296  {
297  G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
298  sigma=CrossSectionFormula(targZ, targN, P, G4Log(P));
299  }
300  if(sigma<0.) return 0.;
301  return sigma;
302 }
static const G4int nH
static const G4int nL
G4double CrossSectionFormula(G4int targZ, G4int targN, G4double P, G4double lP)
int G4int
Definition: G4Types.hh:78
static double P[]
Char_t n[5]
G4double EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double *Y)
G4double G4Log(G4double x)
Definition: G4Log.hh:230
G4double CrossSectionLin(G4int targZ, G4int targN, G4double P)
#define G4endl
Definition: G4ios.hh:61
double G4double
Definition: G4Types.hh:76
G4double CrossSectionLog(G4int targZ, G4int targN, G4double lP)
static const G4double THmin
G4GLOB_DLL std::ostream G4cerr
Here is the call graph for this function:
Here is the caller graph for this function:

◆ CrossSectionDescription()

void G4ChipsAntiBaryonInelasticXS::CrossSectionDescription ( std::ostream &  outFile) const
virtual

Reimplemented from G4VCrossSectionDataSet.

Definition at line 86 of file G4ChipsAntiBaryonInelasticXS.cc.

87 {
88  outFile << "G4ChipsAntiBaryonInelasticXS provides the inelastic cross\n"
89  << "section for anti-baryon nucleus scattering as a function of incident\n"
90  << "momentum. The cross section is calculated using M. Kossov's\n"
91  << "CHIPS parameterization of cross section data.\n";
92 }
Here is the caller graph for this function:

◆ CrossSectionFormula()

G4double G4ChipsAntiBaryonInelasticXS::CrossSectionFormula ( G4int  targZ,
G4int  targN,
G4double  P,
G4double  lP 
)
private

Definition at line 318 of file G4ChipsAntiBaryonInelasticXS.cc.

320 {
321  G4double sigma=0.;
322  if(tZ==1 && !tN) // AntiBar-Prot interaction from G4QuasiElRatios
323  {
324  G4double ld=lP-3.5;
325  G4double ld2=ld*ld;
326  G4double ye=G4Exp(lP*1.25);
327  G4double yt=G4Exp(lP*0.35);
328  G4double El=80./(ye+1.);
329  G4double To=(80./yt+.3)/yt;
330  sigma=(To-El)+.2443*ld2+31.48;
331  }
332  else if(tZ==1 && tN==1)
333  {
334  G4double r=lP-3.7;
335  sigma=0.6*r*r+67.+90.*G4Exp(-lP*.666);
336  }
337  else if(tZ<97 && tN<152) // General solution
338  {
339  G4double d=lP-4.2;
340  G4double sp=std::sqrt(P);
341  G4double a=tN+tZ; // A of the target
342  G4double sa=std::sqrt(a);
343  G4double a2=a*a;
344  G4double a3=a2*a;
345  G4double a2s=a2*sa;
346  G4double c=(170.+3600./a2s)/(1.+65./a2s)+40.*G4Pow::GetInstance()->powA(a,0.712)/(1.+12.2/a)/(1.+34./a2);
347  G4double r=(170.+0.01*a3)/(1.+a3/28000.);
348  sigma=c+d*d+r/sp;
349  }
350  else
351  {
352  G4cerr<<"-Warning-G4QAntiBarNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
353  sigma=0.;
354  }
355  if(sigma<0.) return 0.;
356  return sigma;
357 }
static G4Pow * GetInstance()
Definition: G4Pow.cc:55
Float_t d
static double P[]
static const G4double a3
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
#define G4endl
Definition: G4ios.hh:61
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:259
double G4double
Definition: G4Types.hh:76
static const G4double a2
G4GLOB_DLL std::ostream G4cerr
Here is the call graph for this function:
Here is the caller graph for this function:

◆ CrossSectionLin()

G4double G4ChipsAntiBaryonInelasticXS::CrossSectionLin ( G4int  targZ,
G4int  targN,
G4double  P 
)
private

Definition at line 305 of file G4ChipsAntiBaryonInelasticXS.cc.

306 {
307  G4double lP=G4Log(P);
308  return CrossSectionFormula(tZ, tN, P, lP);
309 }
G4double CrossSectionFormula(G4int targZ, G4int targN, G4double P, G4double lP)
static double P[]
G4double G4Log(G4double x)
Definition: G4Log.hh:230
double G4double
Definition: G4Types.hh:76
Here is the call graph for this function:
Here is the caller graph for this function:

◆ CrossSectionLog()

G4double G4ChipsAntiBaryonInelasticXS::CrossSectionLog ( G4int  targZ,
G4int  targN,
G4double  lP 
)
private

Definition at line 312 of file G4ChipsAntiBaryonInelasticXS.cc.

313 {
314  G4double P=G4Exp(lP);
315  return CrossSectionFormula(tZ, tN, P, lP);
316 }
G4double CrossSectionFormula(G4int targZ, G4int targN, G4double P, G4double lP)
static double P[]
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
double G4double
Definition: G4Types.hh:76
Here is the call graph for this function:
Here is the caller graph for this function:

◆ Default_Name()

static const char* G4ChipsAntiBaryonInelasticXS::Default_Name ( )
inlinestatic

Definition at line 52 of file G4ChipsAntiBaryonInelasticXS.hh.

52 {return "ChipsAntiBaryonInelasticXS";}
Here is the call graph for this function:
Here is the caller graph for this function:

◆ EquLinearFit()

G4double G4ChipsAntiBaryonInelasticXS::EquLinearFit ( G4double  X,
G4int  N,
G4double  X0,
G4double  DX,
G4double Y 
)
private

Definition at line 359 of file G4ChipsAntiBaryonInelasticXS.cc.

360 {
361  if(DX<=0. || N<2)
362  {
363  G4cerr<<"***G4ChipsAntiBaryonInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
364  return Y[0];
365  }
366 
367  G4int N2=N-2;
368  G4double d=(X-X0)/DX;
369  G4int jj=static_cast<int>(d);
370  if (jj<0) jj=0;
371  else if(jj>N2) jj=N2;
372  d-=jj; // excess
373  G4double yi=Y[jj];
374  G4double sigma=yi+(Y[jj+1]-yi)*d;
375 
376  return sigma;
377 }
Float_t d
Float_t Y
int G4int
Definition: G4Types.hh:78
Float_t X
#define G4endl
Definition: G4ios.hh:61
**D E S C R I P T I O N
double G4double
Definition: G4Types.hh:76
G4GLOB_DLL std::ostream G4cerr
Here is the caller graph for this function:

◆ GetChipsCrossSection()

G4double G4ChipsAntiBaryonInelasticXS::GetChipsCrossSection ( G4double  momentum,
G4int  Z,
G4int  N,
G4int  pdg 
)
virtual

!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)

Definition at line 156 of file G4ChipsAntiBaryonInelasticXS.cc.

157 {
158 
159  G4bool in=false; // By default the isotope must be found in the AMDB
160  if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
161  {
162  in = false; // By default the isotope haven't be found in AMDB
163  lastP = 0.; // New momentum history (nothing to compare with)
164  lastN = tgN; // The last N of the calculated nucleus
165  lastZ = tgZ; // The last Z of the calculated nucleus
166  lastI = colN.size(); // Size of the Associative Memory DB in the heap
167  j = 0; // A#0f records found in DB for this projectile
168  if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope
169  {
170  if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
171  {
172  lastI=i; // Remember the index for future fast/last use
173  lastTH =colTH[i]; // The last THreshold (A-dependent)
174  if(pMom<=lastTH)
175  {
176  return 0.; // Energy is below the Threshold value
177  }
178  lastP =colP [i]; // Last Momentum (A-dependent)
179  lastCS =colCS[i]; // Last CrossSect (A-dependent)
180  in = true; // This is the case when the isotop is found in DB
181  // Momentum pMom is in IU ! @@ Units
182  lastCS=CalculateCrossSection(-1,j,cPDG,lastZ,lastN,pMom); // read & update
183  if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
184  {
185  lastCS=0.;
186  lastTH=pMom;
187  }
188  break; // Go out of the LOOP
189  }
190  j++; // Increment a#0f records found in DB
191  }
192  if(!in) // This isotope has not been calculated previously
193  {
195  lastCS=CalculateCrossSection(0,j,cPDG,lastZ,lastN,pMom); //calculate & create
196  //if(lastCS>0.) // It means that the AMBD was initialized
197  //{
198 
199  lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
200  colN.push_back(tgN);
201  colZ.push_back(tgZ);
202  colP.push_back(pMom);
203  colTH.push_back(lastTH);
204  colCS.push_back(lastCS);
205  //} // M.K. Presence of H1 with high threshold breaks the syncronization
206  return lastCS*millibarn;
207  } // End of creation of the new set of parameters
208  else
209  {
210  colP[lastI]=pMom;
211  colCS[lastI]=lastCS;
212  }
213  } // End of parameters udate
214  else if(pMom<=lastTH)
215  {
216  return 0.; // Momentum is below the Threshold Value -> CS=0
217  }
218  else // It is the last used -> use the current tables
219  {
220  lastCS=CalculateCrossSection(1,j,cPDG,lastZ,lastN,pMom); // Only read and UpdateDB
221  lastP=pMom;
222  }
223  return lastCS*millibarn;
224 }
G4double CalculateCrossSection(G4int F, G4int I, G4int PDG, G4int Z, G4int N, G4double Momentum)
ifstream in
Definition: comparison.C:7
int G4int
Definition: G4Types.hh:78
bool G4bool
Definition: G4Types.hh:79
static const double millibarn
Definition: G4SIunits.hh:105
Here is the call graph for this function:
Here is the caller graph for this function:

◆ GetIsoCrossSection()

G4double G4ChipsAntiBaryonInelasticXS::GetIsoCrossSection ( const G4DynamicParticle Pt,
G4int  tgZ,
G4int  A,
const G4Isotope iso = 0,
const G4Element elm = 0,
const G4Material mat = 0 
)
virtual

Reimplemented from G4VCrossSectionDataSet.

Definition at line 144 of file G4ChipsAntiBaryonInelasticXS.cc.

148 {
149  G4double pMom=Pt->GetTotalMomentum();
150  G4int tgN = A - tgZ;
151  G4int pdg = Pt->GetDefinition()->GetPDGEncoding();
152 
153  return GetChipsCrossSection(pMom, tgZ, tgN, pdg);
154 }
G4double GetTotalMomentum() const
int G4int
Definition: G4Types.hh:78
double A(double temperature)
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
G4ParticleDefinition * GetDefinition() const
double G4double
Definition: G4Types.hh:76
Here is the call graph for this function:
Here is the caller graph for this function:

◆ IsIsoApplicable()

G4bool G4ChipsAntiBaryonInelasticXS::IsIsoApplicable ( const G4DynamicParticle Pt,
G4int  Z,
G4int  A,
const G4Element elm,
const G4Material mat 
)
virtual

Reimplemented from G4VCrossSectionDataSet.

Definition at line 95 of file G4ChipsAntiBaryonInelasticXS.cc.

98 {
99  /*
100  const G4ParticleDefinition* particle = Pt->GetDefinition();
101 
102  if(particle == G4AntiNeutron::AntiNeutron())
103  {
104  return true;
105  }
106  else if(particle == G4AntiProton::AntiProton())
107  {
108  return true;
109  }
110  else if(particle == G4AntiLambda::AntiLambda())
111  {
112  return true;
113  }
114  else if(particle == G4AntiSigmaPlus::AntiSigmaPlus())
115  {
116  return true;
117  }
118  else if(particle == G4AntiSigmaMinus::AntiSigmaMinus())
119  {
120  return true;
121  }
122  else if(particle == G4AntiSigmaZero::AntiSigmaZero())
123  {
124  return true;
125  }
126  else if(particle == G4AntiXiMinus::AntiXiMinus())
127  {
128  return true;
129  }
130  else if(particle == G4AntiXiZero::AntiXiZero())
131  {
132  return true;
133  }
134  else if(particle == G4AntiOmegaMinus::AntiOmegaMinus())
135  {
136  return true;
137  }
138  */
139  return true;
140 }
Here is the caller graph for this function:

Member Data Documentation

◆ colCS

std::vector<G4double> G4ChipsAntiBaryonInelasticXS::colCS
private

Definition at line 94 of file G4ChipsAntiBaryonInelasticXS.hh.

◆ colN

std::vector<G4int> G4ChipsAntiBaryonInelasticXS::colN
private

Definition at line 90 of file G4ChipsAntiBaryonInelasticXS.hh.

◆ colP

std::vector<G4double> G4ChipsAntiBaryonInelasticXS::colP
private

Definition at line 92 of file G4ChipsAntiBaryonInelasticXS.hh.

◆ colTH

std::vector<G4double> G4ChipsAntiBaryonInelasticXS::colTH
private

Definition at line 93 of file G4ChipsAntiBaryonInelasticXS.hh.

◆ colZ

std::vector<G4int> G4ChipsAntiBaryonInelasticXS::colZ
private

Definition at line 91 of file G4ChipsAntiBaryonInelasticXS.hh.

◆ HEN

std::vector<G4double*>* G4ChipsAntiBaryonInelasticXS::HEN
private

Definition at line 87 of file G4ChipsAntiBaryonInelasticXS.hh.

◆ j

G4int G4ChipsAntiBaryonInelasticXS::j
private

Definition at line 89 of file G4ChipsAntiBaryonInelasticXS.hh.

◆ lastCS

G4double G4ChipsAntiBaryonInelasticXS::lastCS
private

Definition at line 84 of file G4ChipsAntiBaryonInelasticXS.hh.

◆ lastHEN

G4double* G4ChipsAntiBaryonInelasticXS::lastHEN
private

Definition at line 79 of file G4ChipsAntiBaryonInelasticXS.hh.

◆ lastI

G4int G4ChipsAntiBaryonInelasticXS::lastI
private

Definition at line 85 of file G4ChipsAntiBaryonInelasticXS.hh.

◆ lastLEN

G4double* G4ChipsAntiBaryonInelasticXS::lastLEN
private

Definition at line 78 of file G4ChipsAntiBaryonInelasticXS.hh.

◆ lastN

G4int G4ChipsAntiBaryonInelasticXS::lastN
private

Definition at line 80 of file G4ChipsAntiBaryonInelasticXS.hh.

◆ lastP

G4double G4ChipsAntiBaryonInelasticXS::lastP
private

Definition at line 82 of file G4ChipsAntiBaryonInelasticXS.hh.

◆ lastTH

G4double G4ChipsAntiBaryonInelasticXS::lastTH
private

Definition at line 83 of file G4ChipsAntiBaryonInelasticXS.hh.

◆ lastZ

G4int G4ChipsAntiBaryonInelasticXS::lastZ
private

Definition at line 81 of file G4ChipsAntiBaryonInelasticXS.hh.

◆ LEN

std::vector<G4double*>* G4ChipsAntiBaryonInelasticXS::LEN
private

Definition at line 86 of file G4ChipsAntiBaryonInelasticXS.hh.


The documentation for this class was generated from the following files: