87   crossSectionHandler(0),
   130     G4cout << 
"G4LowEnergyBremsstrahlung::BuildPhysicsTable start"   139   for(
size_t i=0; i<15; i++) {
   142     if(i == 10) x = 0.95;
   143     if(i == 11) x = 0.97;
   144     if(i == 12) x = 0.99;
   145     if(i == 13) x = 0.995;
   149   const G4String dataName(
"/brem/br-sp.dat");
   153     G4cout << 
"G4LowEnergyBremsstrahlungSpectrum is initialized"   170            << 
" is created; Cross section data: "   183     G4cout << 
"The loss table is built"   206     G4cout << 
"The MeanFreePath table is built"   215     G4cout << 
"G4LowEnergyBremsstrahlung::BuildPhysicsTable end"   247   for (
size_t j=0; j<numOfCouples; j++) {
   260     tCut = 
std::min(highKineticEnergy, tCut);
   265     const G4double* theAtomicNumDensityVector =
   268       G4cout << 
"Energy loss for material # " << j
   269              << 
" tCut(keV)= " << tCut/
keV   274     for (
size_t i = 0; i<totBin; i++) {
   280       for (
size_t iel=0; iel<NumberOfElements; iel++ ) {
   281         G4int Z = (
G4int)((*theElementVector)[iel]->GetZ());
   284         ionloss   += e * cs  * theAtomicNumDensityVector[iel];
   287                  << 
"; tCut(keV)= " << tCut/
keV   288                  << 
"; E(keV)= " << lowEdgeEnergy/
keV   289                  << 
"; Eav(keV)= " << e/
keV   291          << 
"; loss= " << ionloss
   308   G4double kineticEnergy = track.GetKineticEnergy();
   313   if(tCut >= kineticEnergy)
   320   G4double finalEnergy = kineticEnergy - tGamma; 
   323   if((kineticEnergy < 1*MeV && kineticEnergy > 1*
keV && 
generatorName == 
"2bn")){
   331   G4double sinTheta  = std::sqrt(1. - dirZ*dirZ);
   332   G4double dirX  = sinTheta*std::cos(phi);
   333   G4double dirY  = sinTheta*std::sin(phi);
   336   G4ThreeVector electronDirection = track.GetMomentumDirection();
   341   gammaDirection.
rotateUz(electronDirection);   
   344   if (finalEnergy < 0.) {
   345     tGamma += finalEnergy;
   349   G4double momentum = std::sqrt((totalEnergy + electron_mass_c2)*kineticEnergy);
   351   G4double finalX = momentum*electronDirection.
x() - tGamma*gammaDirection.
x();
   352   G4double finalY = momentum*electronDirection.
y() - tGamma*gammaDirection.
y();
   353   G4double finalZ = momentum*electronDirection.
z() - tGamma*gammaDirection.
z();
   356   G4double norm = 1./std::sqrt(finalX*finalX + finalY*finalY + finalZ*finalZ);
   357   aParticleChange.ProposeMomentumDirection(finalX*norm, finalY*norm, finalZ*norm);
   362                             gammaDirection, tGamma);
   371   G4String comments = 
"Total cross sections from EEDL database.";
   372   comments += 
"\n      Gamma energy sampled from a parameterised formula.";
   373   comments += 
"\n      Implementation of the continuous dE/dx part.";  
   374   comments += 
"\n      At present it can be used for electrons ";
   375   comments += 
"in the energy range [250eV,100GeV].";
   376   comments += 
"\n      The process must work with G4LowEnergyIonisation.";
   389                             G4ForceCondition* cond)
   392   G4int index = (track.GetMaterialCutsCouple())->GetIndex();
   417   else if (name == 
"2bn")
   423   else if (name == 
"2bs")
   431       G4Exception(
"G4LowEnergyBremsstrahlung::SetAngularGenerator()",
 
G4int SelectRandomAtom(const G4MaterialCutsCouple *couple, G4double e) const
 
std::vector< G4Element * > G4ElementVector
 
virtual G4double PolarAngle(const G4double initial_energy, const G4double final_energy, const G4int Z)=0
 
void insert(G4PhysicsVector *)
 
const G4Material * GetMaterial() const
 
G4DataVector cutForSecondaryPhotons
 
static G4int CounterOfElectronProcess
 
void Initialise(G4RDVDataSetAlgorithm *interpolation=0, G4double minE=250 *CLHEP::eV, G4double maxE=100 *CLHEP::GeV, G4int numberOfBins=200, G4double unitE=CLHEP::MeV, G4double unitData=CLHEP::barn, G4int minZ=1, G4int maxZ=99)
 
void PrintInfoDefinition()
 
void LoadShellData(const G4String &dataFile)
 
void BuildLossTable(const G4ParticleDefinition &ParticleType)
 
virtual const G4RDVEMDataSet * GetComponent(G4int componentId) const =0
 
static G4double GetLowerBoundEloss()
 
const std::vector< G4double > * GetEnergyCutsVector(size_t pcIdx) const
 
~G4LowEnergyBremsstrahlung()
 
G4RDVEnergySpectrum * energySpectrum
 
G4double GetLowEdgeEnergy(size_t binNumber) const
 
const G4String & GetProcessName() const
 
const G4double * GetAtomicNumDensityVector() const
 
G4GLOB_DLL std::ostream G4cout
 
void SetCutForLowEnSecPhotons(G4double cut)
 
Hep3Vector & rotateUz(const Hep3Vector &)
 
static const double twopi
 
void PutValue(size_t index, G4double theValue)
 
G4RDVBremAngularDistribution * TsaiAngularDistribution
 
void BuildDEDXTable(const G4ParticleDefinition &aParticleType)
 
virtual G4double FindValue(G4double x, G4int componentId=0) const =0
 
virtual void PrintData() const =0
 
G4double FindValue(G4int Z, G4double e) const
 
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
 
static G4PhysicsTable ** RecorderOfPositronProcess
 
static G4ProductionCutsTable * GetProductionCutsTable()
 
static G4double GetUpperBoundEloss()
 
virtual G4double AverageEnergy(G4int Z, G4double minKineticEnergy, G4double maxKineticEnergy, G4double kineticEnergy, G4int shell=0, const G4ParticleDefinition *pd=0) const =0
 
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
 
static G4PhysicsTable ** RecorderOfElectronProcess
 
static G4int GetNbinEloss()
 
void SetAngularGenerator(G4RDVBremAngularDistribution *distribution)
 
G4LowEnergyBremsstrahlung(const G4String &processName="LowEnBrem")
 
size_t GetNumberOfElements() const
 
G4ParticleChange aParticleChange
 
size_t GetTableSize() const
 
G4RDVCrossSectionHandler * crossSectionHandler
 
void BuildPhysicsTable(const G4ParticleDefinition &particleType)
 
static G4Electron * Electron()
 
G4RDVEMDataSet * theMeanFreePath
 
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
 
G4PhysicsTable * theLossTable
 
static G4int CounterOfPositronProcess
 
const G4ElementVector * GetElementVector() const
 
G4double GetMeanFreePath(const G4Track &track, G4double previousStepSize, G4ForceCondition *condition)
 
G4RDVBremAngularDistribution * angularDistribution
 
G4VParticleChange * PostStepDoIt(const G4Track &track, const G4Step &step)
 
virtual G4double SampleEnergy(G4int Z, G4double minKineticEnergy, G4double maxKineticEnergy, G4double kineticEnergy, G4int shell=0, const G4ParticleDefinition *pd=0) const =0
 
G4bool IsApplicable(const G4ParticleDefinition &)
 
virtual void PrintGeneratorInformation() const =0