Geant4  10.02.p03
G4LogicalVolume.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4LogicalVolume.hh 102288 2017-01-20 10:57:03Z gcosmo $
28 //
29 //
30 // class G4LogicalVolume
31 //
32 // Class description:
33 //
34 // Represents a leaf node or unpositioned subtree in the geometry hierarchy.
35 // Logical volumes are named, and may have daughters ascribed to them.
36 // They are responsible for retrieval of the physical and tracking attributes
37 // of the physical volume that it represents: solid, material, magnetic field,
38 // and optionally, user limits, sensitive detectors, regions, biasing weights.
39 //
40 // Get and Set functionality is provided for all attributes, but note that
41 // most set functions should not be used when the geometry is `closed'.
42 // As a further development, `Guard' checks can be added to ensure
43 // only legal operations at tracking time.
44 //
45 // On construction, solid, material and name must be specified.
46 //
47 // Daughters are ascribed and managed by means of a simple
48 // GetNoDaughters,Get/SetDaughter(n),AddDaughter interface.
49 //
50 // Smart voxels as used for tracking optimisation. They're also an attribute.
51 //
52 // Logical volumes self register to the logical volume Store on construction,
53 // and deregister on destruction.
54 //
55 // NOTE: This class is currently *NOT* subclassed, since not meant to
56 // act as a base class. Therefore, the destructor is NOT virtual.
57 //
58 // Data members:
59 //
60 // std::vector<G4VPhysicalVolume*> fDaughters
61 // - Vector of daughters. Given initial size of 0.
62 // G4FieldManager* fFieldManager
63 // - Pointer (possibly 0) to (magnetic or other) field manager object.
64 // G4Material* fMaterial
65 // - Pointer to material at this node.
66 // G4String fName
67 // - Name of logical volume.
68 // G4VSensitiveDetector *fSensitiveDetector
69 // - Pointer (possibly 0) to `Hit' object.
70 // G4VSolid* fSolid
71 // - Pointer to solid.
72 // G4UserLimits* fUserLimits
73 // - Pointer (possibly 0) to user Step limit object for this node.
74 // G4SmartVoxelHeader* fVoxel
75 // - Pointer (possibly 0) to optimisation info objects.
76 // G4bool fOptimise
77 // - Flag to identify if optimisation should be applied or not.
78 // G4bool fRootRegion
79 // - Flag to identify if the logical volume is a root region.
80 // G4double fSmartless
81 // - Quality for optimisation, average number of voxels to be spent
82 // per content.
83 // const G4VisAttributes* fVisAttributes
84 // - Pointer (possibly 0) to visualization attributes.
85 // G4Region* fRegion
86 // - Pointer to the cuts region (if any)
87 // G4MaterialCutsCouple* fCutsCouple
88 // - Pointer (possibly 0) to associated production cuts.
89 // G4double fBiasWeight
90 // - Weight used in the event biasing technique.
91 //
92 // Following data members has been moved to G4Region - M.Asai (Aug/18/2005)
93 // G4FastSimulationManager* fFastSimulationManager
94 // - Pointer (possibly 0) to G4FastSimulationManager object.
95 // G4bool fIsEnvelope
96 // - Flags if the Logical Volume is an envelope for a FastSimulationManager.
97 
98 // History:
99 // 15.01.13 G.Cosmo, A.Dotti: Modified for thread-safety for MT
100 // 12.11.04 G.Cosmo: Added GetMass() method for computing mass of the tree
101 // 24.09.02 G.Cosmo: Added flags and accessors for region cuts handling
102 // 17.05.02 G.Cosmo: Added IsToOptimise() method and related flag
103 // 18.04.01 G.Cosmo: Migrated to STL vector
104 // 12.02.99 S.Giani: Added user defined optimisation quality
105 // 09.11.98 J.Apostolakis: Changed G4MagneticField to G4FieldManager
106 // 09.11.98 M.Verderi, J.Apostolakis: Added BiasWeight member and accessors
107 // 10.20.97 P.M.DeFreitas: Added pointer to a FastSimulation
108 // J.Apostolakis: & flag to indicate if it is an Envelope for it
109 // 19.11.96 J.Allison: Replaced G4Visible with explicit const G4VisAttributes*
110 // 19.08.96 P.Kent: Split -> hh/icc/cc files; G4VSensitiveDetector change
111 // 11.07.95 P.Kent: Initial version.
112 // ------------------------------------------------------------------------
113 #ifndef G4LOGICALVOLUME_HH
114 #define G4LOGICALVOLUME_HH
115 
116 #include <vector>
117 
118 #include "G4Types.hh"
119 #include "G4Region.hh" // Required by inline methods
120 #include "G4VPhysicalVolume.hh" // Need operator == for vector fdaughters
121 #include "G4GeomSplitter.hh" // Needed for MT RW data splitting
122 #include "G4Threading.hh"
123 
124 // Forward declarations
125 //
126 class G4FieldManager;
127 class G4Material;
129 class G4VSolid;
130 class G4UserLimits;
131 class G4SmartVoxelHeader;
132 class G4VisAttributes;
135 
136 class G4LVData
137 {
138  // Encapsulates the fields associated to the class
139  // G4LogicalVolume that may not be read-only.
140 
141  public:
142  G4LVData();
143  void initialize()
144  {
145  fSolid = 0;
146  fSensitiveDetector = 0;
147  fFieldManager = 0;
148  fMaterial = 0;
149  fMass = 0.0;
150  fCutsCouple = 0;
151  }
152 
153  public:
154 
156  // Pointer to solid.
158  // Pointer to sensitive detector.
160  // Pointer (possibly 0) to (magnetic or other) field manager object.
162  // Pointer to material at this node.
164  // Mass of the logical volume tree.
166  // Pointer (possibly 0) to associated production cuts.
167 };
168 
169 // The type G4LVManager is introduced to encapsulate the methods used by
170 // both the master thread and worker threads to allocate memory space for
171 // the fields encapsulated by the class G4LVData. When each thread
172 // initializes the value for these fields, it refers to them using a macro
173 // definition defined below. For every G4LogicalVolume instance, there is
174 // a corresponding G4LVData instance. All G4LVData instances are organized
175 // by the class G4LVManager as an array.
176 // The field "int instanceID" is added to the class G4LogicalVolume.
177 // The value of this field in each G4LogicalVolume instance is the subscript
178 // of the corresponding G4LVData instance.
179 // In order to use the class G4LVManager, we add a static member in the class
180 // G4LogicalVolume as follows: "static G4LVManager subInstanceManager".
181 // For the master thread, the array for G4LVData instances grows dynamically
182 // along with G4LogicalVolume instances are created. For each worker thread,
183 // it copies the array of G4LVData instances from the master thread.
184 // In addition, it invokes a method similiar to the constructor explicitly
185 // to achieve the partial effect for each instance in the array.
186 //
188 
190 {
191  typedef std::vector<G4VPhysicalVolume*> G4PhysicalVolumeList;
192 
193  public: // with description
194 
195  G4LogicalVolume(G4VSolid* pSolid,
196  G4Material* pMaterial,
197  const G4String& name,
198  G4FieldManager* pFieldMgr=0,
199  G4VSensitiveDetector* pSDetector=0,
200  G4UserLimits* pULimits=0,
201  G4bool optimise=true);
202  // Constructor. The solid and material pointer must be non null.
203  // The parameters for field, detector and user limits are optional.
204  // The volume also enters itself into the logical volume Store.
205  // Optimisation of the geometry (voxelisation) for the volume
206  // hierarchy is applied by default. For parameterised volumes in
207  // the hierarchy, optimisation is -always- applied.
208 
209  ~G4LogicalVolume();
210  // Destructor. Removes the logical volume from the logical volume Store.
211  // This class is NOT meant to act as base class.
212 
213  inline const G4String& GetName() const;
214  inline void SetName(const G4String& pName);
215  // Returns and sets the name of the logical volume.
216 
217  inline G4int GetNoDaughters() const;
218  // Returns the number of daughters (0 to n).
219  inline G4VPhysicalVolume* GetDaughter(const G4int i) const;
220  // Returns the ith daughter. Note numbering starts from 0,
221  // and no bounds checking is performed.
222  void AddDaughter(G4VPhysicalVolume* p);
223  // Adds the volume p as a daughter of the current logical volume.
224  inline G4bool IsDaughter(const G4VPhysicalVolume* p) const;
225  // Returns true if the volume p is a daughter of the current
226  // logical volume.
227  G4bool IsAncestor(const G4VPhysicalVolume* p) const;
228  // Returns true if the volume p is part of the hierarchy of
229  // volumes established by the current logical volume. Scans
230  // recursively the volume tree.
231  void RemoveDaughter(const G4VPhysicalVolume* p);
232  // Removes the volume p from the List of daughter of the current
233  // logical volume.
234  void ClearDaughters();
235  // Clears the list of daughters. Used by the phys-volume store when
236  // the geometry tree is cleared, since modified at run-time.
237  G4int TotalVolumeEntities() const;
238  // Returns the total number of physical volumes (replicated or placed)
239  // in the tree represented by the current logical volume.
240  inline EVolume CharacteriseDaughters() const;
241  // Characterise the daughters of this logical volume.
242 
243  G4VSolid* GetSolid() const;
244  void SetSolid(G4VSolid *pSolid);
245  // Gets and sets the current solid.
246 
247  G4Material* GetMaterial() const;
248  void SetMaterial(G4Material *pMaterial);
249  // Gets and sets the current material.
250  void UpdateMaterial(G4Material *pMaterial);
251  // Sets material and corresponding MaterialCutsCouple.
252  // This method is invoked by G4Navigator while it is navigating through
253  // material parameterization.
254  G4double GetMass(G4bool forced=false, G4bool propagate=true,
255  G4Material* parMaterial=0);
256  // Returns the mass of the logical volume tree computed from the
257  // estimated geometrical volume of each solid and material associated
258  // to the logical volume and (by default) to its daughters.
259  // NOTE: the computation may require a considerable amount of time,
260  // depending from the complexity of the geometry tree.
261  // The returned value is cached and can be used for successive
262  // calls (default), unless recomputation is forced by providing
263  // 'true' for the boolean argument in input. Computation should
264  // be forced if the geometry setup has changed after the previous
265  // call. By setting the 'propagate' boolean flag to 'false' the
266  // method returns the mass of the present logical volume only
267  // (subtracted for the volume occupied by the daughter volumes).
268  // An optional argument to specify a material is also provided.
269  void ResetMass();
270  // Ensure that cached value of Mass is invalidated - due to change in
271  // state, e.g. change of size of Solid, change of type of solid,
272  // or the addition/deletion of a daughter volume.
273 
274  G4FieldManager* GetFieldManager() const;
275  // Gets current FieldManager.
276  void SetFieldManager(G4FieldManager *pFieldMgr, G4bool forceToAllDaughters);
277  // Sets FieldManager and propagates it:
278  // i) only to daughters with G4FieldManager = 0
279  // if forceToAllDaughters=false
280  // ii) to all daughters
281  // if forceToAllDaughters=true
282 
283  G4VSensitiveDetector* GetSensitiveDetector() const;
284  // Gets current SensitiveDetector.
285  void SetSensitiveDetector(G4VSensitiveDetector *pSDetector);
286  // Sets SensitiveDetector (can be 0).
287 
288  inline G4UserLimits* GetUserLimits() const;
289  inline void SetUserLimits(G4UserLimits *pULimits);
290  // Gets and sets current UserLimits.
291 
292  inline G4SmartVoxelHeader* GetVoxelHeader() const;
293  inline void SetVoxelHeader(G4SmartVoxelHeader *pVoxel);
294  // Gets and sets current VoxelHeader.
295 
296  inline G4double GetSmartless() const;
297  inline void SetSmartless(G4double s);
298  // Gets and sets user defined optimisation quality.
299 
300  inline G4bool IsToOptimise() const;
301  // Replies if geometry optimisation (voxelisation) is to be
302  // applied for this volume hierarchy.
303  inline void SetOptimisation(G4bool optim);
304  // Specifies if to apply or not geometry optimisation to this
305  // volume hierarchy. Note that for parameterised volumes in the
306  // hierarchy, optimisation is always applied.
307 
308  inline G4bool IsRootRegion() const;
309  // Replies if the logical volume represents a root region or not.
310  inline void SetRegionRootFlag(G4bool rreg);
311  // Sets/unsets the volume as a root region for cuts.
312  inline G4bool IsRegion() const;
313  // Replies if the logical volume is part of a cuts region or not.
314  inline void SetRegion(G4Region* reg);
315  // Sets/unsets the volume as cuts region.
316  inline G4Region* GetRegion() const;
317  // Return the region to which the volume belongs, if any.
318  inline void PropagateRegion();
319  // Propagates region pointer to daughters.
320 
321  const G4MaterialCutsCouple* GetMaterialCutsCouple() const;
322  void SetMaterialCutsCouple(G4MaterialCutsCouple* cuts);
323  // Accessors for production cuts.
324 
325  G4bool operator == (const G4LogicalVolume& lv) const;
326  // Equality defined by address only.
327  // Returns true if objects are at same address, else false.
328 
329  inline const G4VisAttributes* GetVisAttributes () const;
330  inline void SetVisAttributes (const G4VisAttributes* pVA);
331  void SetVisAttributes (const G4VisAttributes& VA);
332  // Gets and sets visualization attributes. A copy of 'VA' on the heap
333  // will be made in the case the call with a const reference is used.
334 
335  inline G4FastSimulationManager* GetFastSimulationManager () const;
336  // Gets current FastSimulationManager pointer if exists, otherwise null.
337 
338  inline void SetBiasWeight (G4double w);
339  inline G4double GetBiasWeight() const;
340  // Sets and gets bias weight.
341 
342  public: // without description
343 
344  G4LogicalVolume(__void__&);
345  // Fake default constructor for usage restricted to direct object
346  // persistency for clients requiring preallocation of memory for
347  // persistifiable objects.
348 
349  inline G4FieldManager* GetMasterFieldManager() const;
350  // Gets current FieldManager for the master thread.
351  inline G4VSensitiveDetector* GetMasterSensitiveDetector() const;
352  // Gets current SensitiveDetector for the master thread.
353  inline G4VSolid* GetMasterSolid() const;
354  // Gets current Solid for the master thread.
355 
356  inline G4int GetInstanceID() const;
357  // Returns the instance ID.
358  static const G4LVManager& GetSubInstanceManager();
359 
360  // Sets the private data instance manager - in order to use a particular Workspace
361 
362  // static const G4LVManager* GetSubInstanceManagerPtr();
363  // static const G4LVManager SetSubInstanceManager(G4LVManager* subInstanceManager);
364  // Revised Implementation - to enable Workspaces which can used by different
365  // threads at different times (only one thread or task can use a workspace at a time. )
366 
367  inline void Lock();
368  // Set lock identifier for final deletion of entity.
369 
370  void InitialiseWorker(G4LogicalVolume *ptrMasterObject,
371  G4VSolid* pSolid, G4VSensitiveDetector* pSDetector);
372  // This method is similar to the constructor. It is used by each worker
373  // thread to achieve the partial effect as that of the master thread.
374 
375  void TerminateWorker(G4LogicalVolume *ptrMasterObject);
376  // This method is similar to the destructor. It is used by each worker
377  // thread to achieve the partial effect as that of the master thread.
378 
379  void AssignFieldManager( G4FieldManager *fldMgr);
380  // Set the FieldManager - only at this level (do not push down hierarchy)
381 
382  static G4VSolid* GetSolid(G4LVData &instLVdata) ; // const;
383  static void SetSolid(G4LVData &instLVdata, G4VSolid *pSolid);
384  // Optimised Methods - passing thread instance of worker data
385 
386  private:
387 
389  G4LogicalVolume& operator=(const G4LogicalVolume&);
390  // Private copy-constructor and assignment operator.
391 
392  private:
393 
394  // Data members:
395 
396  G4PhysicalVolumeList fDaughters;
397  // Vector of daughters. Given initial size of 0.
399  // Name of logical volume.
400  // Pointer (possibly 0) to `Hit' object.
401 
403  // Pointer (possibly 0) to user Step limit object for this node.
405  // Pointer (possibly 0) to optimisation info objects.
407  // Flag to identify if optimisation should be applied or not.
409  // Flag to identify if the logical volume is a root region.
411  // Flag to identify if entity is locked for final deletion.
413  // Quality for optimisation, average number of voxels to be spent
414  // per content.
416  // Pointer (possibly 0) to visualization attributes.
418  // Pointer to the cuts region (if any)
420  // Weight used in the event biasing technique.
421 
423  // This new field is used as instance ID.
425  // This new field helps to use the class G4LVManager introduced above.
426 
427  // Shadow of master pointers.
428  // Each worker thread can access this field from the master thread
429  // through these pointers.
430  //
434  G4LVData* lvdata; // For use of object persistency
435 };
436 
437 #include "G4LogicalVolume.icc"
438 
439 #endif
G4SmartVoxelHeader * fVoxel
bool operator==(const HepRotation &r, const HepLorentzRotation &lt)
G4FieldManager * fFieldManager
static G4GEOM_DLL G4LVManager subInstanceManager
G4GeomSplitter< G4LVData > G4LVManager
G4String name
Definition: TRTMaterials.hh:40
G4double fMass
std::vector< G4VPhysicalVolume * > G4PhysicalVolumeList
G4MaterialCutsCouple * fCutsCouple
G4VSensitiveDetector * fSensitiveDetector
int G4int
Definition: G4Types.hh:78
static const G4double reg
static const double s
Definition: G4SIunits.hh:168
G4FieldManager * fFieldManager
bool G4bool
Definition: G4Types.hh:79
G4Material * fMaterial
void initialize()
def SetMaterial(material_name)
Definition: EmPlot.py:25
EVolume
Definition: geomdefs.hh:68
double G4double
Definition: G4Types.hh:76
G4VSensitiveDetector * fSensitiveDetector
G4UserLimits * fUserLimits
#define G4GEOM_DLL
Definition: geomwdefs.hh:48
G4VSolid * fSolid
G4PhysicalVolumeList fDaughters
const G4VisAttributes * fVisAttributes