Geant4  10.02.p03
G4INCLTransmissionChannel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // INCL++ intra-nuclear cascade model
27 // Alain Boudard, CEA-Saclay, France
28 // Joseph Cugnon, University of Liege, Belgium
29 // Jean-Christophe David, CEA-Saclay, France
30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31 // Sylvie Leray, CEA-Saclay, France
32 // Davide Mancusi, CEA-Saclay, France
33 //
34 #define INCLXX_IN_GEANT4_MODE 1
35 
36 #include "globals.hh"
37 
39 
40 namespace G4INCL {
41 
42  TransmissionChannel::TransmissionChannel(Nucleus * const nucleus, Particle * const particle)
43  : theNucleus(nucleus), theParticle(particle),
44  refraction(false),
45  pOutMag(0.),
46  kineticEnergyOutside(initializeKineticEnergyOutside()),
47  cosRefractionAngle(1.)
48  {}
49 
50  TransmissionChannel::TransmissionChannel(Nucleus * const nucleus, Particle * const particle, const G4double TOut)
51  : theNucleus(nucleus), theParticle(particle),
52  refraction(false),
53  pOutMag(0.),
56  {}
57 
58  TransmissionChannel::TransmissionChannel(Nucleus * const nucleus, Particle * const particle, const G4double kOut, const G4double cosR)
59  : theNucleus(nucleus), theParticle(particle),
60  refraction(true),
61  pOutMag(kOut),
63  cosRefractionAngle(cosR)
64  {}
65 
67 
69  // The particle energy outside the nucleus. Subtract the nuclear
70  // potential from the kinetic energy when leaving the nucleus
73  - theParticle->getMass();
74 
75  // Correction for real masses
76  const G4int AParent = theNucleus->getA();
77  const G4int ZParent = theNucleus->getZ();
78  const G4double theQValueCorrection = theParticle->getEmissionQValueCorrection(AParent,ZParent);
79  TOut += theQValueCorrection;
80  return TOut;
81  }
82 
84 
85  // Use the table mass in the outside world
88 
89  if(refraction) {
90  // Change the momentum direction
91  // The magnitude of the particle momentum outside the nucleus will be
92  // fixed by the kineticEnergyOutside variable. This is done in order to
93  // avoid numerical inaccuracies.
95  const G4double r2 = position.mag2();
97  if(r2>0.)
98  normal = position / std::sqrt(r2);
99 
100  const ThreeVector &momentum = theParticle->getMomentum();
101 
102  const ThreeVector pOut = normal * (pOutMag * cosRefractionAngle) + momentum - normal * normal.dot(momentum);
103 // assert(std::fabs(pOut.mag()-pOutMag)<1.e-5);
104 
105  theParticle->setMomentum(pOut);
106  }
107  // Scaling factor for the particle momentum
110  }
111 
113  G4double initialEnergy = 0.0;
114  initialEnergy = theParticle->getEnergy() - theParticle->getPotentialEnergy();
115 
116  // Correction for real masses
117  const G4int AParent = theNucleus->getA();
118  const G4int ZParent = theNucleus->getZ();
119  initialEnergy += theParticle->getTableMass() - theParticle->getMass()
120  + theParticle->getEmissionQValueCorrection(AParent,ZParent);
121 
122  particleLeaves();
123 
124  fs->setTotalEnergyBeforeInteraction(initialEnergy);
125  fs->addOutgoingParticle(theParticle); // We write the particle down as outgoing
126  }
127 }
TransmissionChannel(Nucleus *n, Particle *p)
G4double getEnergy() const
G4double mag2() const
const G4INCL::ThreeVector & getPosition() const
G4double getMass() const
Get the cached particle mass.
void particleLeaves()
Modify particle that leaves the nucleus.
G4int getA() const
Returns the baryon number.
G4int getZ() const
Returns the charge number.
int G4int
Definition: G4Types.hh:78
void setEnergy(G4double energy)
static double normal(HepRandomEngine *eptr)
Definition: RandPoisson.cc:77
const G4double cosRefractionAngle
Cosine of the refraction angle.
const G4bool refraction
True if refraction should be applied.
const G4double pOutMag
Momentum of the particle outside the nucleus.
void addOutgoingParticle(Particle *p)
void setPotentialEnergy(G4double v)
Set the particle potential energy.
virtual G4double getTableMass() const
Get the tabulated particle mass.
G4double dot(const ThreeVector &v) const
void setTotalEnergyBeforeInteraction(G4double E)
G4double getPotentialEnergy() const
Get the particle potential energy.
void setTableMass()
Set the mass of the Particle to its table mass.
const G4double kineticEnergyOutside
Kinetic energy of the particle outside the nucleus.
double G4double
Definition: G4Types.hh:76
const G4INCL::ThreeVector & getMomentum() const
const ThreeVector & adjustMomentumFromEnergy()
Rescale the momentum to match the total energy.
G4double initializeKineticEnergyOutside()
Kinetic energy of the transmitted particle.
G4double getEmissionQValueCorrection(const G4int AParent, const G4int ZParent) const
Computes correction on the emission Q-value.
virtual void setMomentum(const G4INCL::ThreeVector &momentum)