Geant4  10.02.p03
G4INCLKinematicsUtils.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // INCL++ intra-nuclear cascade model
27 // Alain Boudard, CEA-Saclay, France
28 // Joseph Cugnon, University of Liege, Belgium
29 // Jean-Christophe David, CEA-Saclay, France
30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31 // Sylvie Leray, CEA-Saclay, France
32 // Davide Mancusi, CEA-Saclay, France
33 //
34 #define INCLXX_IN_GEANT4_MODE 1
35 
36 #include "globals.hh"
37 
38 #include "G4INCLKinematicsUtils.hh"
39 #include "G4INCLParticleTable.hh"
40 
41 namespace G4INCL {
42 
43  namespace KinematicsUtils {
44 
45  void transformToLocalEnergyFrame(Nucleus const * const n, Particle * const p) {
46  const G4double localEnergy = getLocalEnergy(n, p);
47  const G4double localTotalEnergy = p->getEnergy() - localEnergy;
48  p->setEnergy(localTotalEnergy);
50  }
51 
52  G4double getLocalEnergy(Nucleus const * const n, Particle * const p) {
53 // assert(!p->isPion()); // No local energy for pions
54 
55  G4double vloc = 0.0;
56  const G4double r = p->getPosition().mag();
57  const G4double mass = p->getMass();
58 
59  // Local energy is constant outside the surface
60  if(r > n->getUniverseRadius()) {
61  INCL_WARN("Tried to evaluate local energy for a particle outside the maximum radius."
62  << '\n' << p->print() << '\n'
63  << "Maximum radius = " << n->getDensity()->getMaximumRadius() << '\n'
64  << "Universe radius = " << n->getUniverseRadius() << '\n');
65  return 0.0;
66  }
67 
68  G4double pfl0 = 0.0;
69  const ParticleType t = p->getType();
70  const G4double kinE = p->getKineticEnergy();
71  if(kinE <= n->getPotential()->getFermiEnergy(t)) {
72  pfl0 = n->getPotential()->getFermiMomentum(p);
73  } else {
74  const G4double tf0 = p->getPotentialEnergy() - n->getPotential()->getSeparationEnergy(p);
75  if(tf0<0.0) return 0.0;
76  pfl0 = std::sqrt(tf0*(tf0 + 2.0*mass));
77  }
78  const G4double pReflection = p->getReflectionMomentum()/pfl0;
79  const G4double reflectionRadius = n->getDensity()->getMaxRFromP(p->getType(), pReflection);
80  const G4double pNominal = p->getMomentum().mag()/pfl0;
81  const G4double nominalReflectionRadius = n->getDensity()->getMaxRFromP(p->getType(), pNominal);
82  const G4double pl = pfl0*n->getDensity()->getMinPFromR(t, r*nominalReflectionRadius/reflectionRadius);
83  vloc = std::sqrt(pl*pl + mass*mass) - mass;
84 
85  return vloc;
86  }
87 
88  ThreeVector makeBoostVector(Particle const * const p1, Particle const * const p2){
89  const G4double totalEnergy = p1->getEnergy() + p2->getEnergy();
90  return ((p1->getMomentum() + p2->getMomentum())/totalEnergy);
91  }
92 
93  G4double totalEnergyInCM(Particle const * const p1, Particle const * const p2){
94  return std::sqrt(squareTotalEnergyInCM(p1,p2));
95  }
96 
97  G4double squareTotalEnergyInCM(Particle const * const p1, Particle const * const p2) {
98  G4double beta2 = makeBoostVector(p1, p2).mag2();
99  if(beta2 > 1.0) {
100  INCL_ERROR("squareTotalEnergyInCM: beta2 == " << beta2 << " > 1.0" << '\n');
101  beta2 = 0.0;
102  }
103  return (1.0 - beta2)*std::pow(p1->getEnergy() + p2->getEnergy(), 2);
104  }
105 
106  G4double momentumInCM(Particle const * const p1, Particle const * const p2) {
107  const G4double m1sq = std::pow(p1->getMass(),2);
108  const G4double m2sq = std::pow(p2->getMass(),2);
109  const G4double z = p1->getEnergy()*p2->getEnergy() - p1->getMomentum().dot(p2->getMomentum());
110  G4double pcm2 = (z*z-m1sq*m2sq)/(2*z+m1sq+m2sq);
111  if(pcm2 < 0.0) {
112  INCL_ERROR("momentumInCM: pcm2 == " << pcm2 << " < 0.0" << '\n');
113  pcm2 = 0.0;
114  }
115  return std::sqrt(pcm2);
116  }
117 
118  G4double momentumInCM(const G4double E, const G4double M1, const G4double M2) {
119  return 0.5*std::sqrt((E*E - std::pow(M1 + M2, 2))
120  *(E*E - std::pow(M1 - M2, 2)))/E;
121  }
122 
123  G4double momentumInLab(const G4double s, const G4double m1, const G4double m2) {
124  const G4double m1sq = m1*m1;
125  const G4double m2sq = m2*m2;
126  G4double plab2 = (s*s-2*s*(m1sq+m2sq)+(m1sq-m2sq)*(m1sq-m2sq))/(4*m2sq);
127  if(plab2 < 0.0) {
128  INCL_ERROR("momentumInLab: plab2 == " << plab2 << " < 0.0; m1sq == " << m1sq << "; m2sq == " << m2sq << "; s == " << s << '\n');
129  plab2 = 0.0;
130  }
131  return std::sqrt(plab2);
132  }
133 
134  G4double momentumInLab(Particle const * const p1, Particle const * const p2) {
135  const G4double m1 = p1->getMass();
136  const G4double m2 = p2->getMass();
137  const G4double s = squareTotalEnergyInCM(p1, p2);
138  return momentumInLab(s, m1, m2);
139  }
140 
142  G4double E = 0.0;
143  for(ParticleIter i=pl.begin(), e=pl.end(); i!=e; ++i) {
144  E += (*i)->getEnergy();
145  }
146  return E;
147  }
148 
150  ThreeVector p(0.0, 0.0, 0.0);
151  for(ParticleIter i=pl.begin(), e=pl.end(); i!=e; ++i) {
152  p += (*i)->getMomentum();
153  }
154  return p;
155  }
156 
157  G4double energy(const ThreeVector &p, const G4double m) {
158  return std::sqrt(p.mag2() + m*m);
159  }
160 
162  return std::sqrt(squareInvariantMass(E, p));
163  }
164 
166  return E*E - p.mag2();
167  }
168 
170  G4double mass;
171  if(p.theType==Composite)
173  else
175  return (1.+EKin/mass);
176  }
177 
178  }
179 
180 }
G4ThreadLocal ParticleMassFn getTableParticleMass
Static pointer to the mass function for particles.
G4double getEnergy() const
pl
Definition: readPY.py:5
G4double mag2() const
void transformToLocalEnergyFrame(Nucleus const *const n, Particle *const p)
const G4INCL::ThreeVector & getPosition() const
G4double getMass() const
Get the cached particle mass.
G4double getMinPFromR(const ParticleType t, const G4double r) const
G4double squareTotalEnergyInCM(Particle const *const p1, Particle const *const p2)
ThreeVector sumMomenta(const ParticleList &)
G4double getFermiMomentum(const Particle *const p) const
Return the Fermi momentum for a particle.
#define INCL_ERROR(x)
G4double getReflectionMomentum() const
Return the reflection momentum.
G4double getMaxRFromP(const ParticleType t, const G4double p) const
Get the maximum allowed radius for a given momentum.
#define INCL_WARN(x)
G4double getSeparationEnergy(const Particle *const p) const
Return the separation energy for a particle.
G4double mag() const
G4double momentumInCM(Particle const *const p1, Particle const *const p2)
gives the momentum in the CM frame of two particles.
G4double getKineticEnergy() const
Get the particle kinetic energy.
ThreeVector makeBoostVector(Particle const *const p1, Particle const *const p2)
std::string print() const
void setEnergy(G4double energy)
G4double gammaFromKineticEnergy(const ParticleSpecies &p, const G4double EKin)
static const double s
Definition: G4SIunits.hh:168
Char_t n[5]
G4INCL::ParticleType getType() const
static const double m2
Definition: G4SIunits.hh:129
G4double dot(const ThreeVector &v) const
G4double invariantMass(const G4double E, const ThreeVector &p)
G4double getMaximumRadius() const
G4double getPotentialEnergy() const
Get the particle potential energy.
G4double getUniverseRadius() const
Getter for theUniverseRadius.
G4double energy(const ThreeVector &p, const G4double m)
G4ThreadLocal NuclearMassFn getTableMass
Static pointer to the mass function for nuclei.
NuclearDensity const * getDensity() const
Getter for theDensity.
NuclearPotential::INuclearPotential const * getPotential() const
Getter for thePotential.
G4double squareInvariantMass(const G4double E, const ThreeVector &p)
static const double m
Definition: G4SIunits.hh:128
G4double momentumInLab(Particle const *const p1, Particle const *const p2)
gives the momentum in the lab frame of two particles.
double G4double
Definition: G4Types.hh:76
const G4INCL::ThreeVector & getMomentum() const
G4double totalEnergyInCM(Particle const *const p1, Particle const *const p2)
const ThreeVector & adjustMomentumFromEnergy()
Rescale the momentum to match the total energy.
ParticleList::const_iterator ParticleIter
G4double sumTotalEnergies(const ParticleList &)
G4double getLocalEnergy(Nucleus const *const n, Particle *const p)