78 #include "G4Evaporation.hh"    85   maxZForFermiBreakUp(9),maxAForFermiBreakUp(17),minEForMultiFrag(400*
GeV),
    86   minExcitation(0.1*
keV),OPTxs(3),useSICB(false),isEvapLocal(true)
   138   } 
else if(exEnergy < minExcitation && nist->GetIsotopeAbundance(Z, A) > 0.0) {
   154     size_t nsec = theTempResult->size();
   162       G4bool deletePrimary = 
true;
   163       G4FragmentVector::iterator j;
   164       for (j = theTempResult->begin(); j != theTempResult->end(); ++j) {  
   165         if((*j) == theInitialStatePtr) { deletePrimary = 
false; }
   166         A = (*j)->GetA_asInt();  
   174           G4double exEnergy1 = (*j)->GetExcitationEnergy();
   178         Z = (*j)->GetZ_asInt(); 
   190       if( deletePrimary ) { 
delete theInitialStatePtr; }
   192     delete theTempResult; 
   205   static const G4int countmax = 1000;
   214       ed << 
"Infinite loop in the de-excitation module: " << kk
   216      << 
"      Initial fragment: \n" << theInitialState
   217      << 
"\n      Current fragment: \n" << *frag;
   219           ed,
"Stop execution");
   239           for(
size_t j=0; j<nsec; ++j) {
   240         exEnergy = 
results[j]->GetExcitationEnergy();
   260     for (
size_t j = 0; j<nsec; ++j) {
   269       exEnergy = 
results[j]->GetExcitationEnergy();
   300   for (kk=0; kk<kkmax; ++kk) {
   325   theReactionProductVector->reserve( 
theResults.size() );
   327   G4int theFragmentA, theFragmentZ;
   332   for (kk=0; kk<kkmax; ++kk) {
   341     if (theFragmentA == 0) {       
   343     } 
else if (theFragmentA == 1 && theFragmentZ == 0) { 
   345     } 
else if (theFragmentA == 1 && theFragmentZ == 1) { 
   347     } 
else if (theFragmentA == 2 && theFragmentZ == 1) { 
   349     } 
else if (theFragmentA == 3 && theFragmentZ == 1) { 
   351     } 
else if (theFragmentA == 3 && theFragmentZ == 2) { 
   353     } 
else if (theFragmentA == 4 && theFragmentZ == 2) { 
   368     if(theKindOfFragment) {
   373       theReactionProductVector->push_back(theNew);
   378       if(theKindOfFragment) {
   381     if(etot <= ionmass) {
   384       G4double ptot = std::sqrt((etot - ionmass)*(etot + ionmass));
   391     theReactionProductVector->push_back(theNew);
   403   return theReactionProductVector;
   475     outFile << 
"G4ExcitationHandler description\n"   476             << 
"This class samples de-excitation of excited nucleus using\n"   477             << 
"Fermi Break-up model for light fragments (Z < 9, A < 17), "   478         << 
"evaporation, fission, and photo-evaporation models. Evaporated\n"   479         << 
"particle may be proton, neutron, and other light fragment \n"   480         << 
"(Z < 13, A < 29). During photon evaporation produced gamma \n"   481         << 
"or electrons due to internal conversion \n";
 
void ModelDescription(std::ostream &outFile) const
 
G4bool IsApplicable(G4int Z, G4int A, G4double mass) const
 
static G4Pow * GetInstance()
 
static G4Triton * TritonDefinition()
 
G4double GetExcitationEnergy() const
 
static G4He3 * He3Definition()
 
std::vector< G4Fragment * > theResults
 
std::ostringstream G4ExceptionDescription
 
virtual G4bool BreakUpChain(G4FragmentVector *theResult, G4Fragment *theNucleus)
 
G4VEvaporationChannel * GetPhotonEvaporation()
 
void SetMomentum(const G4double x, const G4double y, const G4double z)
 
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
 
G4double GetGroundStateMass() const
 
static G4Proton * ProtonDefinition()
 
virtual void BreakFragment(G4FragmentVector *, G4Fragment *theNucleus)
 
G4double GetIsotopeAbundance(G4int Z, G4int N) const
 
void SetMinEForMultiFrag(G4double anE)
 
virtual G4FragmentVector * BreakItUp(const G4Fragment &theNucleus)=0
 
static G4NistManager * Instance()
 
G4ReactionProductVector * BreakItUp(const G4Fragment &theInitialState)
 
std::vector< G4Fragment * > results
 
const G4ParticleDefinition * GetParticleDefinition() const
 
std::vector< G4ReactionProduct * > G4ReactionProductVector
 
std::vector< G4Fragment * > thePhotoEvapList
 
double A(double temperature)
 
G4IonTable * GetIonTable() const
 
std::vector< G4Fragment * > theEvapList
 
virtual void InitialiseChannels()
 
void SetFermiModel(G4VFermiBreakUp *ptr)
 
void SetTotalEnergy(const G4double en)
 
std::vector< G4Fragment * > G4FragmentVector
 
void SetMultiFragmentation(G4VMultiFragmentation *ptr)
 
G4VEvaporationChannel * thePhotonEvaporation
 
G4FermiFragmentsPool * thePool
 
G4int maxAForFermiBreakUp
 
G4VMultiFragmentation * theMultiFragmentation
 
G4VFermiBreakUp * theFermiModel
 
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
 
virtual void BreakFragment(G4FragmentVector *, G4Fragment *theNucleus)=0
 
G4double minEForMultiFrag
 
void SetMaxZForFermiBreakUp(G4int aZ)
 
static G4ParticleTable * GetParticleTable()
 
const G4LorentzVector & GetMomentum() const
 
virtual void SetPhotonEvaporation(G4VEvaporationChannel *ptr)
 
void SetMaxAandZForFermiBreakUp(G4int anA, G4int aZ)
 
G4double GetPDGMass() const
 
void SetEvaporation(G4VEvaporation *ptr)
 
G4VEvaporation * theEvaporation
 
void SetMaxAForFermiBreakUp(G4int anA)
 
virtual void Initialise()
 
void SetFormationTime(G4double aTime)
 
static G4FermiFragmentsPool * Instance()
 
void SetPhotonEvaporation(G4VEvaporationChannel *ptr)
 
static G4Deuteron * DeuteronDefinition()
 
static G4Alpha * AlphaDefinition()
 
static G4Neutron * NeutronDefinition()
 
G4double GetCreationTime() const
 
G4int maxZForFermiBreakUp
 
G4IonTable * theTableOfIons