43    : fFunction(pFunction), fNumber(n),
    44      fChebyshevCof(new 
G4double[fNumber]),
    45      fMean(0.5*(b+a)), fDiff(0.5*(b-a))
    55       rootSum = std::cos(cof*(i+0.5)) ;
    65          rootSum += tempFunction[i]*std::cos(cofj*(i+0.5)) ;
    69    delete[] tempFunction ;
    89       G4Exception(
"G4ChebyshevApproximation::G4ChebyshevApproximation()",
   100       rootSum = std::cos(cof*(i+0.5)) ;
   110          rootSum += tempFunction[i]*std::cos(cofj*(i+0.5)) ;
   125    delete[] tempFunction ;   
   149       rootSum = std::cos(cof*(i+0.5)) ;
   159          rootSum += tempFunction[i]*std::cos(cofj*(i+0.5)) ;
   170    delete[] tempFunction ;   
   193    if(number < 0 && number >= 
fNumber)
   195       G4Exception(
"G4ChebyshevApproximation::GetChebyshevCof()",
   209    G4double evaluate = 0.0, evaluate2 = 0.0, temp = 0.0,
   210             xReduced = 0.0, xReduced2 = 0.0 ;
   214       G4Exception(
"G4ChebyshevApproximation::ChebyshevEvaluation()",
   218    xReduced2 = 2.0*xReduced ;
   222      evaluate  = xReduced2*evaluate - evaluate2 + 
fChebyshevCof[i] ;
   225    return xReduced*evaluate - evaluate2 + 0.5*
fChebyshevCof[0] ;
   265       sum += 
factor*integralCof[i] ;
   268    integralCof[fNumber-1] = cof*
fChebyshevCof[fNumber-2]/(fNumber-1) ;
   269    sum += 
factor*integralCof[fNumber-1] ;
   270    integralCof[0] = 2.0*sum ;                
 
void IntegralChebyshevCof(G4double integralCof[]) const
 
G4double ChebyshevEvaluation(G4double x) const
 
G4ChebyshevApproximation(function pFunction, G4int n, G4double a, G4double b)
 
G4double GetChebyshevCof(G4int number) const
 
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
 
static const G4double factor
 
void DerivativeChebyshevCof(G4double derCof[]) const
 
~G4ChebyshevApproximation()