Geant4  10.02.p02
G4CrossSectionHandler.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4CrossSectionHandler.cc 66241 2012-12-13 18:34:42Z gunter $
28 //
29 // Author: Maria Grazia Pia (Maria.Grazia.Pia@cern.ch)
30 //
31 // History:
32 // -----------
33 // 1 Aug 2001 MGP Created
34 // 19 Jul 2002 VI Create composite data set for material
35 // 24 Apr 2003 VI Cut per region mfpt
36 //
37 // 15 Jul 2009 Nicolas A. Karakatsanis
38 //
39 // - BuildCrossSectionForMaterials method was revised in order to calculate the
40 // logarithmic values of the loaded data.
41 // It retrieves the data values from the G4EMLOW data files but, then, calculates the
42 // respective log values and loads them to seperate data structures.
43 // The EM data sets, initialized this way, contain both non-log and log values.
44 // These initialized data sets can enhance the computing performance of data interpolation
45 // operations
46 //
47 // -------------------------------------------------------------------
48 
49 #include "G4CrossSectionHandler.hh"
50 #include "G4VDataSetAlgorithm.hh"
51 #include "G4VEMDataSet.hh"
52 #include "G4EMDataSet.hh"
53 #include "G4CompositeEMDataSet.hh"
54 #include "G4ShellEMDataSet.hh"
55 #include "G4ProductionCutsTable.hh"
56 #include "G4Material.hh"
57 #include "G4Element.hh"
58 #include "Randomize.hh"
59 #include <map>
60 #include <vector>
61 
62 #include "G4LogLogInterpolation.hh"
63 
65 { }
66 
68 { }
69 
70 std::vector<G4VEMDataSet*>*
72  const G4DataVector*)
73 {
74  G4DataVector* energies;
75  G4DataVector* data;
76 
77  G4DataVector* log_energies;
78  G4DataVector* log_data;
79 
80  std::vector<G4VEMDataSet*>* matCrossSections = new std::vector<G4VEMDataSet*>;
81 
82  const G4ProductionCutsTable* theCoupleTable=
84  size_t numOfCouples = theCoupleTable->GetTableSize();
85 
86  size_t nOfBins = energyVector.size();
87  const G4VDataSetAlgorithm* interpolationAlgo = CreateInterpolation();
88 
89  for (size_t mLocal=0; mLocal<numOfCouples; mLocal++)
90  {
91  const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(mLocal);
92  const G4Material* material= couple->GetMaterial();
93  G4int nElements = material->GetNumberOfElements();
94  const G4ElementVector* elementVector = material->GetElementVector();
95  const G4double* nAtomsPerVolume = material->GetAtomicNumDensityVector();
96 
97  G4VDataSetAlgorithm* algo = interpolationAlgo->Clone();
98 
99  G4VEMDataSet* setForMat = new G4CompositeEMDataSet(algo,1.,1.);
100 
101  for (G4int i=0; i<nElements; i++) {
102 
103  G4int Z = (G4int) (*elementVector)[i]->GetZ();
104  G4double density = nAtomsPerVolume[i];
105 
106  energies = new G4DataVector;
107  data = new G4DataVector;
108 
109  log_energies = new G4DataVector;
110  log_data = new G4DataVector;
111 
112 
113  for (size_t bin=0; bin<nOfBins; bin++)
114  {
115  G4double e = energyVector[bin];
116  energies->push_back(e);
117  if (e==0.) e=1e-300;
118  log_energies->push_back(std::log10(e));
119  G4double cross = density*FindValue(Z,e);
120  data->push_back(cross);
121  if (cross==0.) cross=1e-300;
122  log_data->push_back(std::log10(cross));
123  }
124 
125  G4VDataSetAlgorithm* algo1 = interpolationAlgo->Clone();
126 
127 // G4VEMDataSet* elSet = new G4EMDataSet(i,energies,data,algo1,1.,1.);
128 
129  G4VEMDataSet* elSet = new G4EMDataSet(i,energies,data,log_energies,log_data,algo1,1.,1.);
130 
131  setForMat->AddComponent(elSet);
132  }
133 
134  matCrossSections->push_back(setForMat);
135  }
136  delete interpolationAlgo;
137  return matCrossSections;
138 }
139 
std::vector< G4Element * > G4ElementVector
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:190
int G4int
Definition: G4Types.hh:78
virtual G4VDataSetAlgorithm * Clone() const =0
G4double density
Definition: TRTMaterials.hh:39
G4double FindValue(G4int Z, G4double e) const
virtual std::vector< G4VEMDataSet * > * BuildCrossSectionsForMaterials(const G4DataVector &energyVector, const G4DataVector *energyCuts=0)
virtual void AddComponent(G4VEMDataSet *dataSet)=0
const G4double * GetAtomicNumDensityVector() const
Definition: G4Material.hh:216
static G4ProductionCutsTable * GetProductionCutsTable()
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
size_t GetNumberOfElements() const
Definition: G4Material.hh:186
virtual G4VDataSetAlgorithm * CreateInterpolation()
double G4double
Definition: G4Types.hh:76
const G4Material * GetMaterial() const