Geant4  10.02.p02
G4ImplicitEuler.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4ImplicitEuler.cc 66356 2012-12-18 09:02:32Z gcosmo $
28 //
29 //
30 // Implicit Euler:
31 //
32 // x_1 = x_0 + h/2 * ( dx(t_0,x_0) + dx(t_0+h,x_0+h*dx(t_0,x_0) ) )
33 //
34 // Second order solver.
35 // Take the current derivative and add it to the current position.
36 // Take the output and its derivative. Add the mean of both derivatives
37 // to form the final output.
38 //
39 // W.Wander <wwc@mit.edu> 12/09/97
40 //
41 // --------------------------------------------------------------------
42 
43 #include "G4ImplicitEuler.hh"
44 #include "G4ThreeVector.hh"
45 
47 //
48 // Constructor
49 
51  G4int numberOfVariables):
52 G4MagErrorStepper(EqRhs, numberOfVariables)
53 {
54  unsigned int noVariables= std::max(numberOfVariables,8); // For Time .. 7+1
55  dydxTemp = new G4double[noVariables] ;
56  yTemp = new G4double[noVariables] ;
57 }
58 
59 
61 //
62 // Destructor
63 
65 {
66  delete[] dydxTemp;
67  delete[] yTemp;
68 }
69 
71 //
72 //
73 
74 void
76  const G4double dydx[],
77  G4double h,
78  G4double yOut[])
79 {
80  G4int i;
81  const G4int numberOfVariables= GetNumberOfVariables();
82 
83  // Initialise time to t0, needed when it is not updated by the integration.
84  yTemp[7] = yOut[7] = yIn[7]; // Better to set it to NaN; // TODO
85 
86  for( i = 0; i < numberOfVariables; i++ )
87  {
88  yTemp[i] = yIn[i] + h*dydx[i] ;
89  }
90 
92 
93  for( i = 0; i < numberOfVariables; i++ )
94  {
95  yOut[i] = yIn[i] + 0.5 * h * ( dydx[i] + dydxTemp[i] );
96  }
97 
98  return ;
99 }
int G4int
Definition: G4Types.hh:78
G4int GetNumberOfVariables() const
void DumbStepper(const G4double y[], const G4double dydx[], G4double h, G4double yout[])
T max(const T t1, const T t2)
brief Return the largest of the two arguments
void RightHandSide(const double y[], double dydx[])
double G4double
Definition: G4Types.hh:76
G4double * dydxTemp
G4ImplicitEuler(G4EquationOfMotion *EqRhs, G4int numberOfVariables=6)