Geant4  10.02.p02
G4ProjectileFragmentCrossSection.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 #ifndef G4ProjectileFragmentCrossSection_h
28 #define G4ProjectileFragmentCrossSection_h 1
29 
30 #include <cmath>
31 #include <iostream>
32 #include "G4Exp.hh"
33 #include "G4Log.hh"
34 #include "G4Pow.hh"
35 
36 // Implements Physical Review C61, 034607 (2000)
37 // Rewrite starting from EPAX Version 2
38 
40 {
41  public:
43  {
44  p_S[1] = -2.38; // scale factor for xsect in barn
45  p_S[2] = 0.27;
46 
47  p_P[1] = -2.5840E+00; // slope of mass yield curve
48  p_P[2] = -7.5700E-03;
49 
50  p_Delta[1] = -1.0870E+00; // centroid rel. to beta-stability
51  p_Delta[2] = +3.0470E-02;
52  p_Delta[3] = +2.1353E-04;
53  p_Delta[4] = +7.1350E+01;
54 
55  p_R[1] = +0.885E+00; // width parameter R
56  p_R[2] = -9.8160E-03;
57 
58  p_Un[1] = 1.65; // slope par. n-rich ride of Z distr.
59 
60  p_Up[1] = 1.7880; // slope par. p-rich ride of Z distr.
61  p_Up[2] = +4.7210E-03;
62  p_Up[3] = -1.3030E-05;
63 
64  p_mn[1] = 0.400; // memory effect n-rich projectiles
65  p_mn[2] = 0.600;
66 
67  p_mp[1] = -10.25; // memory effect p-rich projectiles
68  p_mp[2] = +10.1;
69 
70  corr_d[1] = -25.0; // correction close to proj.: centroid dzp
71  corr_d[2] = 0.800;
72  corr_r[1] = +20.0; // correction close to proj.: width R
73  corr_r[2] = 0.820;
74  corr_y[1] = 200.0; // correction close to proj.: Yield_a
75  corr_y[2] = 0.90;
76  }
77 
79  {
80 // calculate mass yield
81  G4double Ap13 = G4Pow::GetInstance()->powA(Ap, 1./3.);
82  G4double At13 = G4Pow::GetInstance()->powA(At, 1./3.);
83  G4double S = p_S[2] * (At13 + Ap13 + p_S[1]);
84 // cout << "debug0 "<<S<<" "<<At13<<" "<<Ap13<<" "<<p_S[1]<<" "<<p_S[2]<<endl;
85  G4double p = G4Exp(p_P[2]*Ap + p_P[1]);
86  G4double yield_a = p * S * G4Exp(-p * (Ap - A));
87  cout << "debug1 "<<yield_a<<endl;
88 // modification close to projectile
89  G4double f_mod_y=1.0;
90  if (A/Ap > corr_y[2])
91  {
92  f_mod_y=corr_y[1]*G4Pow::GetInstance()->powN(A/Ap-corr_y[2], 2) + 1.0;
93  }
94  yield_a= yield_a * f_mod_y;
95  cout << "debug1 "<<yield_a<<endl;
96 
97 // calculate maximum of charge dispersion zprob
98  G4double zbeta = A/(1.98+0.0155*G4Pow::GetInstance()->powA(A, (2./3.)));
99  G4double zbeta_p = Ap/(1.98+0.0155*G4Pow::GetInstance()->powA(Ap, (2./3.)));
100  G4double delta;
101  if(A > p_Delta[4])
102  {
103  delta = p_Delta[1] + p_Delta[2]*A;
104  }
105  else
106  {
107  delta = p_Delta[3]*A*A;
108  }
109 
110 // modification close to projectile
111  G4double f_mod=1.0;
112  if(A/Ap > corr_d[2])
113  {
114  f_mod = corr_d[1]*G4Pow::GetInstance()->powN(A/Ap-corr_d[2], 2) + 1.0;
115  }
116  delta = delta*f_mod;
117  G4double zprob = zbeta+delta;
118 
119 // correction for proton- and neutron-rich projectiles
120  G4double dq;
121  if((Zp-zbeta_p)>0)
122  {
123  dq = G4Exp(p_mp[1] + G4double(A)/G4double(Ap)*p_mp[2]);
124  cout << "dq "<<A<<" "<<Ap<<" "<<p_mp[1]
125  <<" "<<p_mp[2]<<" "<<dq<<" "<<p_mp[1] + A/Ap*p_mp[2]<<endl;
126  }
127  else
128  {
129  dq = p_mn[1]*G4Pow::GetInstance()->powN(A/Ap, 2) + p_mn[2]*G4Pow::GetInstance()->powN(A/Ap, 4);
130  }
131  zprob = zprob + dq * (Zp-zbeta_p);
132 
133 // small corr. since Xe-129 and Pb-208 are not on Z_beta line
134  zprob = zprob + 0.0020*A;
135  cout <<"zprob "<<A<<" "<<dq<<" "<<Zp<<" "<<zbeta_p
136  <<" "<<zbeta<<" "<<delta<<endl;
137 
138 // calculate width parameter R
139  G4double r = G4Exp(p_R[1] + p_R[2]*A);
140 
141 // modification close to projectile
142  f_mod=1.0;
143  if (A/Ap > corr_r[2])
144  {
145  f_mod = corr_r[1]*Ap*G4Pow::GetInstance()->powN(A/Ap-corr_r[2], 4)+1.0;
146  }
147  r = r*f_mod;
148 
149 // change width according to dev. from beta-stability
150  if ((Zp-zbeta_p) < 0.0)
151  {
152  r=r*(1.0-0.0833*std::abs(Zp-zbeta_p));
153  }
154 
155 // calculate slope parameters u_n, u_p
156  G4double u_n = p_Un[1];
157  G4double u_p = p_Up[1] + p_Up[2]*A + p_Up[3]*A*A;
158 
159 // calculate charge dispersion
160  G4double expo, fract;
161  if((zprob-Z) > 0)
162  {
163 // neutron-rich
164  expo = -r*G4Pow::GetInstance()->powA(std::abs(zprob-Z), u_n);
165  fract = G4Exp(expo)*std::sqrt(r/3.14159);
166  }
167  else
168  {
169 // proton-rich
170  expo = -r*G4Pow::GetInstance()->powA(std::abs(zprob-Z), u_p);
171  fract = G4Exp(expo)*std::sqrt(r/3.14159);
172  cout << "1 "<<expo<<" "<<r<<" "<<zprob<<" "<<Z<<" "<<u_p<<endl;
173 // go to exponential slope
174  G4double dfdz = 1.2 + 0.647*G4Pow::GetInstance()->powA(A/2.,0.3);
175  G4double z_exp = zprob + dfdz * G4Log(10.) / (2.*r);
176  if( Z>z_exp )
177  {
178  expo = -r*G4Pow::GetInstance()->powA(std::abs(zprob-z_exp), u_p);
179  fract = G4Exp(expo)*std::sqrt(r/3.14159)
180  / G4Pow::GetInstance()->powA(G4Pow::GetInstance()->powA(10, dfdz), Z-z_exp);
181  }
182  }
183 
184  cout << "debug "<<fract<<" "<<yield_a<<endl;
185  G4double epaxv2=fract*yield_a;
186  return epaxv2;
187  }
188 
189  void testMe()
190  {
192  cout << i.doit(58, 28, 9, 4, 49, 28) << endl;
193  // Sigma = 9.800163E-13 b
194  }
195  private:
207 };
208 #endif
static G4Pow * GetInstance()
Definition: G4Pow.cc:55
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:259
G4double powN(G4double x, G4int n) const
Definition: G4Pow.cc:128
double S(double temp)
G4double doit(G4double Ap, G4double Zp, G4double At, G4double Zt, G4double A, G4double Z)
double A(double temperature)
G4double G4Log(G4double x)
Definition: G4Log.hh:230
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
double G4double
Definition: G4Types.hh:76