Geant4  10.02.p02
G4INCLCascade.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // INCL++ intra-nuclear cascade model
27 // Alain Boudard, CEA-Saclay, France
28 // Joseph Cugnon, University of Liege, Belgium
29 // Jean-Christophe David, CEA-Saclay, France
30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31 // Sylvie Leray, CEA-Saclay, France
32 // Davide Mancusi, CEA-Saclay, France
33 //
34 #define INCLXX_IN_GEANT4_MODE 1
35 
36 #include "globals.hh"
37 
38 #ifndef G4INCLCascade_hh
39 #define G4INCLCascade_hh 1
40 
41 #include "G4INCLParticle.hh"
42 #include "G4INCLNucleus.hh"
44 #include "G4INCLCascadeAction.hh"
45 #include "G4INCLEventInfo.hh"
46 #include "G4INCLGlobalInfo.hh"
47 #include "G4INCLLogger.hh"
48 #include "G4INCLConfig.hh"
49 #include "G4INCLRootFinder.hh"
50 
51 namespace G4INCL {
52  class INCL {
53  public:
54  INCL(Config const * const config);
55 
56  ~INCL();
57 
59  INCL(const INCL &rhs);
60 
62  INCL &operator=(const INCL &rhs);
63 
64  G4bool prepareReaction(const ParticleSpecies &projectileSpecies, const G4double kineticEnergy, const G4int A, const G4int Z);
65  G4bool initializeTarget(const G4int A, const G4int Z);
66  inline const EventInfo &processEvent() {
67  return processEvent(
72  );
73  }
74  const EventInfo &processEvent(
75  ParticleSpecies const &projectileSpecies,
76  const G4double kineticEnergy,
77  const G4int targetA,
78  const G4int targetZ
79  );
80 
81  void finalizeGlobalInfo(Random::SeedVector const &initialSeeds);
82  const GlobalInfo &getGlobalInfo() const { return theGlobalInfo; }
83 
84  private:
93  Config const * const theConfig;
96 
99 
102 
104  class RecoilFunctor : public RootFunctor {
105  public:
110  RecoilFunctor(Nucleus * const n, const EventInfo &ei) :
111  RootFunctor(0., 1E6),
112  nucleus(n),
113  outgoingParticles(n->getStore()->getOutgoingParticles()),
114  theEventInfo(ei) {
115  for(ParticleIter p=outgoingParticles.begin(), e=outgoingParticles.end(); p!=e; ++p) {
116  particleMomenta.push_back((*p)->getMomentum());
117  particleKineticEnergies.push_back((*p)->getKineticEnergy());
118  }
119  ProjectileRemnant * const aPR = n->getProjectileRemnant();
120  if(aPR && aPR->getA()>0) {
121  particleMomenta.push_back(aPR->getMomentum());
122  particleKineticEnergies.push_back(aPR->getKineticEnergy());
123  outgoingParticles.push_back(aPR);
124  }
125  }
126  virtual ~RecoilFunctor() {}
127 
133  G4double operator()(const G4double x) const {
135  return nucleus->getConservationBalance(theEventInfo,true).energy;
136  }
137 
139  void cleanUp(const G4bool success) const {
140  if(!success)
142  }
143 
144  private:
149  // \brief Reference to the EventInfo object
152  std::list<ThreeVector> particleMomenta;
154  std::list<G4double> particleKineticEnergies;
155 
160  void scaleParticleEnergies(const G4double rescale) const {
161  // Rescale the energies (and the momenta) of the outgoing particles.
162  ThreeVector pBalance = nucleus->getIncomingMomentum();
163  std::list<ThreeVector>::const_iterator iP = particleMomenta.begin();
164  std::list<G4double>::const_iterator iE = particleKineticEnergies.begin();
165  for( ParticleIter i = outgoingParticles.begin(), e = outgoingParticles.end(); i!=e; ++i, ++iP, ++iE)
166  {
167  const G4double mass = (*i)->getMass();
168  const G4double newKineticEnergy = (*iE) * rescale;
169 
170  (*i)->setMomentum(*iP);
171  (*i)->setEnergy(mass + newKineticEnergy);
172  (*i)->adjustMomentumFromEnergy();
173 
174  pBalance -= (*i)->getMomentum();
175  }
176 
177  nucleus->setMomentum(pBalance);
178  const G4double remnantMass = ParticleTable::getTableMass(nucleus->getA(),nucleus->getZ()) + nucleus->getExcitationEnergy();
179  const G4double pRem2 = pBalance.mag2();
180  const G4double recoilEnergy = pRem2/
181  (std::sqrt(pRem2+remnantMass*remnantMass) + remnantMass);
182  nucleus->setEnergy(remnantMass + recoilEnergy);
183  }
184  };
185 
187  class RecoilCMFunctor : public RootFunctor {
188  public:
193  RecoilCMFunctor(Nucleus * const n, const EventInfo &ei) :
194  RootFunctor(0., 1E6),
195  nucleus(n),
196  theIncomingMomentum(nucleus->getIncomingMomentum()),
197  outgoingParticles(n->getStore()->getOutgoingParticles()),
198  theEventInfo(ei) {
199  thePTBoostVector = nucleus->getIncomingMomentum()/nucleus->getInitialEnergy();
200  for(ParticleIter p=outgoingParticles.begin(), e=outgoingParticles.end(); p!=e; ++p) {
201  (*p)->boost(thePTBoostVector);
202  particleCMMomenta.push_back((*p)->getMomentum());
203  }
204  ProjectileRemnant * const aPR = n->getProjectileRemnant();
205  if(aPR && aPR->getA()>0) {
206  aPR->boost(thePTBoostVector);
207  particleCMMomenta.push_back(aPR->getMomentum());
208  outgoingParticles.push_back(aPR);
209  }
210  }
211  virtual ~RecoilCMFunctor() {}
212 
218  G4double operator()(const G4double x) const {
220  return nucleus->getConservationBalance(theEventInfo,true).energy;
221  }
222 
224  void cleanUp(const G4bool success) const {
225  if(!success)
227  }
228 
229  private:
238  // \brief Reference to the EventInfo object
241  std::list<ThreeVector> particleCMMomenta;
242 
247  void scaleParticleCMMomenta(const G4double rescale) const {
248  // Rescale the CM momenta of the outgoing particles.
249  ThreeVector remnantMomentum = theIncomingMomentum;
250  std::list<ThreeVector>::const_iterator iP = particleCMMomenta.begin();
251  for( ParticleIter i = outgoingParticles.begin(), e = outgoingParticles.end(); i!=e; ++i, ++iP)
252  {
253  (*i)->setMomentum(*iP * rescale);
254  (*i)->adjustEnergyFromMomentum();
255  (*i)->boost(-thePTBoostVector);
256 
257  remnantMomentum -= (*i)->getMomentum();
258  }
259 
260  nucleus->setMomentum(remnantMomentum);
261  const G4double remnantMass = ParticleTable::getTableMass(nucleus->getA(),nucleus->getZ()) + nucleus->getExcitationEnergy();
262  const G4double pRem2 = remnantMomentum.mag2();
263  const G4double recoilEnergy = pRem2/
264  (std::sqrt(pRem2+remnantMass*remnantMass) + remnantMass);
265  nucleus->setEnergy(remnantMass + recoilEnergy);
266  }
267  };
268 
275 
276 #ifndef INCLXX_IN_GEANT4_MODE
277 
286  void globalConservationChecks(G4bool afterRecoil);
287 #endif
288 
295 
314 
322  void makeCompoundNucleus();
323 
325  G4bool preCascade(ParticleSpecies const &projectileSpecies, const G4double kineticEnergy);
326 
328  void cascade();
329 
331  void postCascade();
332 
337  void initMaxInteractionDistance(ParticleSpecies const &p, const G4double kineticEnergy);
338 
344  void initUniverseRadius(ParticleSpecies const &p, const G4double kineticEnergy, const G4int A, const G4int Z);
345 
347  void updateGlobalInfo();
348  };
349 }
350 
351 #endif
G4int getA() const
Returns the baryon number.
G4double operator()(const G4double x) const
Compute the energy-conservation violation.
G4double maxUniverseRadius
G4bool targetInitSuccess
ConservationBalance getConservationBalance(EventInfo const &theEventInfo, const G4bool afterRecoil) const
Compute charge, mass, energy and momentum balance.
G4int minRemnantSize
Remnant size below which cascade stops.
INCL & operator=(const INCL &rhs)
Dummy assignment operator to silence Coverity warning.
The INCL configuration object.
Definition: G4INCLConfig.hh:60
void cleanUp(const G4bool success) const
Clean up after root finding.
std::list< G4double > particleKineticEnergies
Initial kinetic energies of the outgoing particles.
const GlobalInfo & getGlobalInfo() const
G4bool prepareReaction(const ParticleSpecies &projectileSpecies, const G4double kineticEnergy, const G4int A, const G4int Z)
G4bool continueCascade()
Stopping criterion for the cascade.
void cascade()
The actual cascade loop.
G4double maxInteractionDistance
void postCascade()
Finalise the cascade and clean up.
G4int getTargetZ() const
Get the target charge number.
Definition: G4INCLConfig.hh:97
G4bool preCascade(ParticleSpecies const &projectileSpecies, const G4double kineticEnergy)
Initialise the cascade.
const ThreeVector & getIncomingMomentum() const
Get the incoming momentum vector.
std::list< ThreeVector > particleMomenta
Initial momenta of the outgoing particles.
Config const *const theConfig
void updateGlobalInfo()
Update global counters and other members of theGlobalInfo object.
const G4INCL::ThreeVector & getMomentum() const
Get the momentum vector.
G4double operator()(const G4double x) const
Compute the energy-conservation violation.
EventInfo const & theEventInfo
RecoilCMFunctor(Nucleus *const n, const EventInfo &ei)
Prepare for calling the () operator and scaleParticleEnergies.
Class to adjust remnant recoil.
void boost(const ThreeVector &aBoostVector)
Boost the cluster with the indicated velocity.
std::list< ThreeVector > particleCMMomenta
Initial CM momenta of the outgoing particles.
CascadeAction * cascadeAction
int G4int
Definition: G4Types.hh:78
Propagation model takes care of transporting the particles until something interesting (i...
G4double mag2() const
Get the square of the length.
Class containing default actions to be performed at intermediate cascade steps.
IPropagationModel * propagationModel
Nucleus * nucleus
Pointer to the nucleus.
ParticleList outgoingParticles
List of final-state particles.
void setEnergy(G4double energy)
Set the energy of the particle in MeV.
void finalizeGlobalInfo(Random::SeedVector const &initialSeeds)
void cleanUp(const G4bool success) const
Clean up after root finding.
G4double fixedImpactParameter
void rescaleOutgoingForRecoil()
Rescale the energies of the outgoing particles.
ThreeVector thePTBoostVector
Projectile-target CM boost vector.
G4double getInitialEnergy() const
Get the initial energy.
INCL(Config const *const config)
void initMaxInteractionDistance(ParticleSpecies const &p, const G4double kineticEnergy)
Initialise the maximum interaction distance.
Simple container for output of calculation-wide results.
double A(double temperature)
Simple container for output of event results.
GlobalInfo theGlobalInfo
bool G4bool
Definition: G4Types.hh:79
void initUniverseRadius(ParticleSpecies const &p, const G4double kineticEnergy, const G4int A, const G4int Z)
Initialize the universe radius.
G4int getTargetA() const
Get the target mass number.
Definition: G4INCLConfig.hh:94
const EventInfo & processEvent()
void scaleParticleCMMomenta(const G4double rescale) const
Scale the kinetic energies of the outgoing particles.
G4int getZ() const
Returns the charge number.
RecoilFunctor(Nucleus *const n, const EventInfo &ei)
Prepare for calling the () operator and scaleParticleEnergies.
G4double getExcitationEnergy() const
Get the excitation energy of the nucleus.
Class to adjust remnant recoil in the reaction CM system.
const G4int n
G4bool initializeTarget(const G4int A, const G4int Z)
G4double maxImpactParameter
ParticleSpecies getProjectileSpecies() const
Get the projectile species.
G4ThreadLocal NuclearMassFn getTableMass
Static pointer to the mass function for nuclei.
const G4double x[NPOINTSGL]
void makeCompoundNucleus()
Make a compound nucleus.
ThreeVector theIncomingMomentum
Incoming momentum.
ProjectileRemnant * getProjectileRemnant() const
Get the projectile remnant.
G4bool forceTransparent
G4double getKineticEnergy() const
Get the particle kinetic energy.
void scaleParticleEnergies(const G4double rescale) const
Scale the kinetic energies of the outgoing particles.
double G4double
Definition: G4Types.hh:76
ParticleList outgoingParticles
List of final-state particles.
Nucleus * nucleus
G4double getProjectileKineticEnergy() const
Get the projectile kinetic energy.
G4int makeProjectileRemnant()
Make a projectile pre-fragment out of geometrical spectators.
Nucleus * nucleus
Pointer to the nucleus.
EventInfo theEventInfo
ParticleList::const_iterator ParticleIter
Static root-finder algorithm.
virtual void setMomentum(const G4INCL::ThreeVector &momentum)
Set the momentum vector.
EventInfo const & theEventInfo