Geant4  10.02.p02
G4AngularDistribution.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // hpw: done, but low quality at present.
27 
28 #include "globals.hh"
29 #include "G4Log.hh"
30 #include "G4SystemOfUnits.hh"
31 #include "G4AngularDistribution.hh"
32 #include "Randomize.hh"
33 
35  : sym(symmetrize)
36 {
37  // The following are parameters of the model - not to be confused with the PDG values!
38 
39  mSigma = 0.55;
40  cmSigma = 1.20;
41  gSigma = 9.4;
42 
43  mOmega = 0.783;
44  cmOmega = 0.808;
45  gOmega = 10.95;
46 
47  mPion = 0.138;
48  cmPion = 0.51;
49  gPion = 7.27;
50 
51  mNucleon = 0.938;
52 
53  // Definition of constants for pion-Term (no s-dependence)
54 
55  m42 = 4. * mNucleon * mNucleon;
56  mPion2 = mPion * mPion;
57  cmPion2 = cmPion * cmPion;
59  dPion2 = dPion1 * dPion1;
61 
62  cPion_3 = -(cm6gp/3.);
63  cPion_2 = -(cm6gp * mPion2/dPion1);
64  cPion_1 = -(cm6gp * mPion2 * (2. * cmPion2 + mPion2) / dPion2);
65  cPion_m = -(cm6gp * cmPion2 * mPion2 / dPion2);
66  cPion_L = -(cm6gp * 2. * cmPion2 * mPion2 * (cmPion2 + mPion2) / dPion2 / dPion1);
68 
69  // Definition of constants for sigma-Term (no s-dependence)
70 
71  G4double gSigmaSq = gSigma * gSigma;
72 
73  mSigma2 = mSigma * mSigma;
76  cmSigma6 = cmSigma2 * cmSigma4;
77  dSigma1 = m42 - cmSigma2;
78  dSigma2 = m42 - mSigma2;
79  dSigma3 = cmSigma2 - mSigma2;
80 
81  G4double dSigma1Sq = dSigma1 * dSigma1;
82  G4double dSigma2Sq = dSigma2 * dSigma2;
83  G4double dSigma3Sq = dSigma3 * dSigma3;
84 
85  cm2gs = 0.5 * cmSigma2 * gSigmaSq*gSigmaSq / dSigma3Sq;
86 
87 
88  cSigma_3 = -(cm2gs * dSigma1Sq / 3.);
89  cSigma_2 = -(cm2gs * cmSigma2 * dSigma1 * dSigma2 / dSigma3);
90  cSigma_1 = -(cm2gs * cmSigma4 * (2. * dSigma1 + dSigma2) * dSigma2 / dSigma3Sq);
91  cSigma_m = -(cm2gs * cmSigma6 * dSigma2Sq / mSigma2 / dSigma3Sq);
92  cSigma_L = -(cm2gs * cmSigma6 * dSigma2 * (dSigma1 + dSigma2) * 2. / (dSigma3 * dSigma3Sq));
94 
95  // Definition of constants for omega-Term
96 
97  G4double gOmegaSq = gOmega * gOmega;
98 
99  mOmega2 = mOmega * mOmega;
102  cmOmega6 = cmOmega2 * cmOmega4;
103  dOmega1 = m42 - cmOmega2;
104  dOmega2 = m42 - mOmega2;
105  dOmega3 = cmOmega2 - mOmega2;
106  sOmega1 = cmOmega2 + mOmega2;
107 
108  G4double dOmega3Sq = dOmega3 * dOmega3;
109 
110  cm2go = 0.5 * cmOmega2 * gOmegaSq * gOmegaSq / dOmega3Sq;
111 
112  cOmega_3 = cm2go / 3.;
113  cOmega_2 = -(cm2go * cmOmega2 / dOmega3);
114  cOmega_1 = cm2go * cmOmega4 / dOmega3Sq;
115  cOmega_m = cm2go * cmOmega6 / (dOmega3Sq * mOmega2);
116  cOmega_L = -(cm2go * cmOmega6 * 4. / (dOmega3 * dOmega3Sq));
117 
118  // Definition of constants for mix-Term
119 
120  G4double fac1Tmp = (gSigma * gOmega * cmSigma2 * cmOmega2);
121  fac1 = -(fac1Tmp * fac1Tmp * m42);
122  dMix1 = cmOmega2 - cmSigma2;
123  dMix2 = cmOmega2 - mSigma2;
124  dMix3 = cmSigma2 - mOmega2;
125 
126  G4double dMix1Sq = dMix1 * dMix1;
127  G4double dMix2Sq = dMix2 * dMix2;
128  G4double dMix3Sq = dMix3 * dMix3;
129 
130  cMix_o1 = fac1 / (cmOmega2 * dMix1Sq * dMix2 * dOmega3);
131  cMix_s1 = fac1 / (cmSigma2 * dMix1Sq * dMix3 * dSigma3);
132  cMix_Omega = fac1 / (dOmega3Sq * dMix3Sq * (mOmega2 - mSigma2));
133  cMix_sm = fac1 / (dSigma3Sq * dMix2Sq * (mSigma2 - mOmega2));
134  fac2 = (-fac1) / (dMix1*dMix1Sq * dOmega3Sq * dMix2Sq);
135  fac3 = (-fac1) / (dMix1*dMix1Sq * dSigma3Sq * dMix3Sq);
136 
137  cMix_oLc = fac2 * (3. * cmOmega2*cmOmega4 - cmOmega4 * cmSigma2
138  - 2. * cmOmega4 * mOmega2 - 2. * cmOmega4 * mSigma2
139  + cmOmega2 * mOmega2 * mSigma2 + cmSigma2 * mOmega2 * mSigma2
140  - 4. * cmOmega4 * m42 + 2. * cmOmega2 * cmSigma2 * m42
141  + 3. * cmOmega2 * mOmega2 * m42 - cmSigma2 * mOmega2 * m42
142  + 3. * cmOmega2 * mSigma2 * m42 - cmSigma2 * mSigma2 * m42
143  - 2. * mOmega2 * mSigma2 * m42);
144 
145  cMix_oLs = fac2 * (8. * cmOmega4 - 4. * cmOmega2 * cmSigma2
146  - 6. * cmOmega2 * mOmega2 + 2. * cmSigma2 * mOmega2
147  - 6. * cmOmega2 * mSigma2 + 2. * cmSigma2 * mSigma2
148  + 4. * mOmega2 * mSigma2);
149 
150  cMix_sLc = fac3 * (cmOmega2 * cmSigma4 - 3. * cmSigma6
151  + 2. * cmSigma4 * mOmega2 + 2. * cmSigma4 * mSigma2
152  - cmOmega2 * mOmega2 * mSigma2 - cmSigma2 * mOmega2 * mSigma2
153  - 2. * cmOmega2 * cmSigma2 * m42 + 4. * cmSigma4 * m42
154  + cmOmega2 * mOmega2 * m42 - 3. * cmSigma2 * mOmega2 * m42
155  + cmOmega2 * mSigma2 * m42 - 3. * cmSigma2 * mSigma2 * m42
156  + 2. * mOmega2 * mSigma2 * m42);
157 
158  cMix_sLs = fac3 * (4. * cmOmega2 * cmSigma2 - 8. * cmSigma4
159  - 2. * cmOmega2 * mOmega2 + 6. * cmSigma2 * mOmega2
160  - 2. * cmOmega2 * mSigma2 + 6. * cmSigma2 * mSigma2
161  - 4. * mOmega2 * mSigma2);
162 }
163 
164 
167 { }
168 
169 
171 {
172  G4double random = G4UniformRand();
173  G4double dCosTheta = 2.;
174  G4double cosTheta = -1.;
175 
176  // For jmax=12 the accuracy is better than 0.1 degree
177  G4int jMax = 12;
178 
179  for (G4int j = 1; j <= jMax; ++j)
180  {
181  // Accuracy is 2^-jmax
182  dCosTheta *= 0.5;
183  G4double cosTh = cosTheta + dCosTheta;
184  if(DifferentialCrossSection(S, m_1, m_2, cosTh) <= random) cosTheta = cosTh;
185  }
186 
187  // Randomize in final interval in order to avoid discrete angles
188  cosTheta += G4UniformRand() * dCosTheta;
189 
190 
191  if (cosTheta > 1. || cosTheta < -1.)
192  throw G4HadronicException(__FILE__, __LINE__, "G4AngularDistribution::CosTheta - std::cos(theta) outside allowed range");
193 
194  return cosTheta;
195 }
196 
197 
199  G4double cosTheta) const
200 {
201 // local calculus is in GeV, ie. normalize input
202  sIn = sIn/sqr(GeV)+m42/2.;
203  m_1 = m_1/GeV;
204  m_2 = m_2/GeV;
205 // G4cout << "Here we go"<<sIn << " "<<m1 << " " << m2 <<" " m42<< G4endl;
206 // scaling from masses other than p,p.
207  G4double S = sIn - (m_1+m_2) * (m_1+m_2) + m42;
208  G4double tMax = S - m42;
209  G4double tp = 0.5 * (cosTheta + 1.) * tMax;
210  G4double twoS = 2. * S;
211 
212  // Define s-dependent stuff for omega-Term
213  G4double brak1 = (twoS-m42) * (twoS-m42);
214  G4double bOmega_3 = cOmega_3 * (-2. * cmOmega4 - 2. * cmOmega2 * twoS - brak1);
215  G4double bOmega_2 = cOmega_2 * ( 2. * cmOmega2 * mOmega2 + sOmega1 * twoS + brak1);
216  G4double bOmega_1 = cOmega_1 * (-4. * cmOmega2 * mOmega2
217  - 2. * mOmega2*mOmega2
218  - 2. * (cmOmega2 + 2 * mOmega2) * twoS
219  - 3. * brak1);
220  G4double bOmega_m = cOmega_m * (-2. * mOmega2*mOmega2 - 2. * mOmega2 * twoS - brak1);
221  G4double bOmega_L = cOmega_L * (sOmega1 * mOmega2 + (cmOmega2 + 3. * mOmega2) * S + brak1);
222  G4double bOmega_0 = -(bOmega_3 + bOmega_2 + bOmega_1 + bOmega_m);
223 
224  // Define s-dependent stuff for mix-Term
225  G4double bMix_o1 = cMix_o1 * (dOmega1 - twoS);
226  G4double bMix_s1 = cMix_s1 * (dSigma1 - twoS);
227  G4double bMix_Omega = cMix_Omega * (dOmega2 - twoS);
228  G4double bMix_sm = cMix_sm * (dSigma2 - twoS);
229  G4double bMix_oL = cMix_oLc + cMix_oLs * S;
230  G4double bMix_sL = cMix_sLc + cMix_sLs * S;
231 
232  G4double t1_Pion = 1. / (1. + tMax / cmPion2);
233  G4double t2_Pion = 1. + tMax / mPion2;
234  G4double t1_Sigma = 1. / (1. + tMax / cmSigma2);
235  G4double t2_Sigma = 1. + tMax / mSigma2;
236  G4double t1_Omega = 1. / (1. + tMax / cmOmega2);
237  G4double t2_Omega = 1. + tMax / mOmega2;
238 
239  G4double norm = Cross(t1_Pion, t1_Sigma, t1_Omega,
240  t2_Pion, t2_Sigma, t2_Omega,
241  bMix_o1, bMix_s1, bMix_Omega,
242  bMix_sm, bMix_oL, bMix_sL,
243  bOmega_0, bOmega_1, bOmega_2,
244  bOmega_3, bOmega_m, bOmega_L);
245 
246  t1_Pion = 1. / (1. + tp / cmPion2);
247  t2_Pion = 1. + tp / mPion2;
248  t1_Sigma = 1. / (1. + tp / cmSigma2);
249  t2_Sigma = 1. + tp / mSigma2;
250  t1_Omega = 1. / (1. + tp / cmOmega2);
251  t2_Omega = 1. + tp / mOmega2;
252 
253  G4double dSigma;
254  if (sym)
255  {
256  G4double to;
257  norm = 2. * norm;
258  to = tMax - tp;
259  G4double t3_Pion = 1. / (1. + to / cmPion2);
260  G4double t4_Pion = 1. + to / mPion2;
261  G4double t3_Sigma = 1. / (1. + to / cmSigma2);
262  G4double t4_Sigma = 1. + to / mSigma2;
263  G4double t3_Omega = 1. / (1. + to / cmOmega2);
264  G4double t4_Omega = 1. + to / mOmega2;
265 
266  dSigma = ( Cross(t1_Pion, t1_Sigma, t1_Omega,
267  t2_Pion,t2_Sigma, t2_Omega,
268  bMix_o1, bMix_s1, bMix_Omega,
269  bMix_sm, bMix_oL, bMix_sL,
270  bOmega_0, bOmega_1, bOmega_2,
271  bOmega_3, bOmega_m, bOmega_L) -
272  Cross(t3_Pion,t3_Sigma, t3_Omega,
273  t4_Pion, t4_Sigma, t4_Omega,
274  bMix_o1, bMix_s1, bMix_Omega,
275  bMix_sm, bMix_oL, bMix_sL,
276  bOmega_0, bOmega_1, bOmega_2,
277  bOmega_3, bOmega_m, bOmega_L) )
278  / norm + 0.5;
279  }
280  else
281  {
282  dSigma = Cross(t1_Pion, t1_Sigma, t1_Omega,
283  t2_Pion, t2_Sigma, t2_Omega,
284  bMix_o1, bMix_s1, bMix_Omega,
285  bMix_sm, bMix_oL, bMix_sL,
286  bOmega_0, bOmega_1, bOmega_2,
287  bOmega_3, bOmega_m, bOmega_L)
288  / norm;
289  }
290 
291  return dSigma;
292 }
293 
294 
296  G4double tpSigma,
297  G4double tpOmega,
298  G4double tmPion,
299  G4double tmSigma,
300  G4double tmOmega,
301  G4double bMix_o1,
302  G4double bMix_s1,
303  G4double bMix_Omega,
304  G4double bMix_sm,
305  G4double bMix_oL,
306  G4double bMix_sL,
307  G4double bOmega_0,
308  G4double bOmega_1,
309  G4double bOmega_2,
310  G4double bOmega_3,
311  G4double bOmega_m,
312  G4double bOmega_L) const
313 {
314  G4double cross = 0;
315  // Pion
316  cross += ((cPion_3 * tpPion + cPion_2) * tpPion + cPion_1) * tpPion + cPion_m/tmPion + cPion_0 + cPion_L * G4Log(tpPion*tmPion);
317 // G4cout << "cross1 "<< cross<<G4endl;
318  // Sigma
319  cross += ((cSigma_3 * tpSigma + cSigma_2) * tpSigma + cSigma_1) * tpSigma + cSigma_m/tmSigma + cSigma_0 + cSigma_L * G4Log(tpSigma*tmSigma);
320 // G4cout << "cross2 "<< cross<<G4endl;
321  // Omega
322  cross += ((bOmega_3 * tpOmega + bOmega_2) * tpOmega + bOmega_1) * tpOmega + bOmega_m/tmOmega + bOmega_0 + bOmega_L * G4Log(tpOmega*tmOmega)
323  // Mix
324  + bMix_o1 * (tpOmega - 1.)
325  + bMix_s1 * (tpSigma - 1.)
326  + bMix_Omega * G4Log(tmOmega)
327  + bMix_sm * G4Log(tmSigma)
328  + bMix_oL * G4Log(tpOmega)
329  + bMix_sL * G4Log(tpSigma);
330 /* G4cout << "cross3 "<< cross<<" "
331  <<bMix_o1<<" "
332  <<bMix_s1<<" "
333  <<bMix_Omega<<" "
334  <<bMix_sm<<" "
335  <<bMix_oL<<" "
336  <<bMix_sL<<" "
337  <<tpOmega<<" "
338  <<tpSigma<<" "
339  <<tmOmega<<" "
340  <<tmSigma<<" "
341  <<tpOmega<<" "
342  <<tpSigma
343  <<G4endl;
344 */
345  return cross;
346 
347 }
G4double Cross(G4double tpPion, G4double tpSigma, G4double tpOmega, G4double tmPion, G4double tmSigma, G4double tmOmega, G4double bMix_o1, G4double bMix_s1, G4double bMix_Omega, G4double bMix_sm, G4double bMix_oL, G4double bMix_sL, G4double bOmega_0, G4double bOmega_1, G4double bOmega_2, G4double bOmega_3, G4double bOmega_m, G4double bOmega_L) const
double S(double temp)
virtual G4double CosTheta(G4double s, G4double m1, G4double m2) const
int G4int
Definition: G4Types.hh:78
#define G4UniformRand()
Definition: Randomize.hh:97
G4AngularDistribution(G4bool symmetrize)
bool G4bool
Definition: G4Types.hh:79
static const double GeV
Definition: G4SIunits.hh:214
G4double G4Log(G4double x)
Definition: G4Log.hh:230
T sqr(const T &x)
Definition: templates.hh:145
double G4double
Definition: G4Types.hh:76
G4double DifferentialCrossSection(G4double sIn, G4double m1, G4double m2, G4double cosTheta) const