Geant4  10.02.p02
G4AnalyticalPolSolver.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4AnalyticalPolSolver.hh 67970 2013-03-13 10:10:06Z gcosmo $
28 //
29 // Class description:
30 //
31 // G4AnalyticalPolSolver allows the user to solve analytically a polynomial
32 // equation up to the 4th order. This is used by CSG solid tracking functions
33 // like G4Torus.
34 //
35 // The algorithm has been adapted from the CACM Algorithm 326:
36 //
37 // Roots of low order polynomials
38 // Author: Terence R.F.Nonweiler
39 // CACM (Apr 1968) p269
40 // Translated into C and programmed by M.Dow
41 // ANUSF, Australian National University, Canberra, Australia
42 // m.dow@anu.edu.au
43 //
44 // Suite of procedures for finding the (complex) roots of the quadratic,
45 // cubic or quartic polynomials by explicit algebraic methods.
46 // Each Returns:
47 //
48 // x=r[1][k] + i r[2][k] k=1,...,n, where n={2,3,4}
49 //
50 // as roots of:
51 // sum_{k=0:n} p[k] x^(n-k) = 0
52 // Assumes p[0] != 0. (< or > 0) (overflows otherwise)
53 
54 // --------------------------- HISTORY --------------------------------------
55 //
56 // 13.05.05 V.Grichine ( Vladimir.Grichine@cern.ch )
57 // First implementation in C++
58 
59 #ifndef G4AN_POL_SOLVER_HH
60 #define G4AN_POL_SOLVER_HH
61 
62 #include "G4Types.hh"
63 
65 {
66  public: // with description
67 
70 
71  G4int QuadRoots( G4double p[5], G4double r[3][5]);
72  G4int CubicRoots( G4double p[5], G4double r[3][5]);
73  G4int BiquadRoots( G4double p[5], G4double r[3][5]);
74  G4int QuarticRoots( G4double p[5], G4double r[3][5]);
75 };
76 
77 #endif
G4int QuadRoots(G4double p[5], G4double r[3][5])
int G4int
Definition: G4Types.hh:78
G4int QuarticRoots(G4double p[5], G4double r[3][5])
double G4double
Definition: G4Types.hh:76
G4int BiquadRoots(G4double p[5], G4double r[3][5])
G4int CubicRoots(G4double p[5], G4double r[3][5])