48   G4double alphaBeta=0.0, alphaReduced=0.0, betaReduced=0.0,
 
   49            root1=0.0, root2=0.0, root3=0.0 ;
 
   51            newton1=0.0, newton2=0.0, newton3=0.0, newton0=0.0,
 
   52            temp=0.0, rootTemp=0.0 ;
 
   58   for (i=1;i<=nJacobi;i++)
 
   62         alphaReduced = alpha/nJacobi ;
 
   63         betaReduced = beta/nJacobi ;
 
   64         root1 = (1.0+
alpha)*(2.78002/(4.0+nJacobi*nJacobi)+
 
   65               0.767999*alphaReduced/nJacobi) ;
 
   66         root2 = 1.0+1.48*alphaReduced+0.96002*betaReduced
 
   67               + 0.451998*alphaReduced*alphaReduced
 
   68               + 0.83001*alphaReduced*betaReduced ;
 
   69         root  = 1.0-root1/root2 ;
 
   73         root1=(4.1002+
alpha)/((1.0+alpha)*(1.0+0.155998*
alpha)) ;
 
   74         root2=1.0+0.06*(nJacobi-8.0)*(1.0+0.12*
alpha)/nJacobi ;
 
   75         root3=1.0+0.012002*beta*(1.0+0.24997*std::fabs(alpha))/nJacobi ;
 
   76         root -= (1.0-root)*root1*root2*root3 ;
 
   80         root1=(1.67001+0.27998*
alpha)/(1.0+0.37002*alpha) ;
 
   81         root2=1.0+0.22*(nJacobi-8.0)/nJacobi ;
 
   82         root3=1.0+8.0*beta/((6.28001+beta)*nJacobi*nJacobi) ;
 
   83         root -= (
fAbscissa[0]-root)*root1*root2*root3 ;
 
   85      else if (i == nJacobi-1)
 
   87         root1=(1.0+0.235002*beta)/(0.766001+0.118998*beta) ;
 
   88         root2=1.0/(1.0+0.639002*(nJacobi-4.0)/(1.0+0.71001*(nJacobi-4.0))) ;
 
   89         root3=1.0/(1.0+20.0*alpha/((7.5+
alpha)*nJacobi*nJacobi)) ;
 
   90         root += (root-
fAbscissa[nJacobi-4])*root1*root2*root3 ;
 
   92      else if (i == nJacobi) 
 
   94         root1 = (1.0+0.37002*beta)/(1.67001+0.27998*beta) ;
 
   95         root2 = 1.0/(1.0+0.22*(nJacobi-8.0)/nJacobi) ;
 
   96         root3 = 1.0/(1.0+8.0*alpha/((6.28002+
alpha)*nJacobi*nJacobi)) ;
 
   97         root += (root-
fAbscissa[nJacobi-3])*root1*root2*root3 ;
 
  103      alphaBeta = alpha + beta ;
 
  104      for (k=1;k<=maxNumber;k++)
 
  106         temp = 2.0 + alphaBeta ;
 
  107         newton1 = (alpha-beta+temp*root)/2.0 ;
 
  109         for (
G4int j=2;j<=nJacobi;j++)
 
  113            temp = 2*j+alphaBeta ;
 
  114            a = 2*j*(j+alphaBeta)*(temp-2.0) ;
 
  115            b = (temp-1.0)*(alpha*alpha-beta*beta+temp*(temp-2.0)*root) ;
 
  116            c = 2.0*(j-1+
alpha)*(j-1+beta)*temp ;
 
  117            newton1 = (b*newton2-c*newton3)/a ;
 
  119         newton0 = (nJacobi*(alpha - beta - temp*root)*newton1 +
 
  120                2.0*(nJacobi + alpha)*(nJacobi + beta)*newton2)/
 
  121               (temp*(1.0 - root*root)) ;
 
  123         root = rootTemp - newton1/newton0 ;
 
  124         if (std::fabs(root-rootTemp) <= 
tolerance)
 
  131         G4Exception(
"G4GaussJacobiQ::G4GaussJacobiQ()", 
"OutOfRange",
 
  139                         *temp*std::pow(2.0,alphaBeta)/(newton0*newton2) ;
 
static const G4float tolerance
 
G4GaussJacobiQ(function pFunction, G4double alpha, G4double beta, G4int nJacobi)
 
G4double Integral() const 
 
G4double GammaLogarithm(G4double xx)
 
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
 
static const G4double alpha