Geant4  10.01
G4RPGOmegaMinusInelastic.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4RPGOmegaMinusInelastic.cc 79697 2014-03-12 13:10:09Z gcosmo $
27 //
28 
30 #include "G4PhysicalConstants.hh"
31 #include "G4SystemOfUnits.hh"
32 #include "Randomize.hh"
33 
36  G4Nucleus &targetNucleus )
37 {
38  const G4HadProjectile *originalIncident = &aTrack;
39  if (originalIncident->GetKineticEnergy()<= 0.1*MeV)
40  {
43  theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
44  return &theParticleChange;
45  }
46 
47  // create the target particle
48 
49  G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
50 // G4double targetMass = originalTarget->GetDefinition()->GetPDGMass();
51  G4ReactionProduct targetParticle( originalTarget->GetDefinition() );
52 
53  if( verboseLevel > 1 )
54  {
55  const G4Material *targetMaterial = aTrack.GetMaterial();
56  G4cout << "G4RPGOmegaMinusInelastic::ApplyYourself called" << G4endl;
57  G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy() << "MeV, ";
58  G4cout << "target material = " << targetMaterial->GetName() << ", ";
59  G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
60  << G4endl;
61  }
62 
63  G4ReactionProduct currentParticle(originalIncident->GetDefinition() );
64  currentParticle.SetMomentum( originalIncident->Get4Momentum().vect() );
65  currentParticle.SetKineticEnergy( originalIncident->GetKineticEnergy() );
66 
67  // Fermi motion and evaporation
68  // As of Geant3, the Fermi energy calculation had not been Done
69 
70  G4double ek = originalIncident->GetKineticEnergy();
71  G4double amas = originalIncident->GetDefinition()->GetPDGMass();
72 
73  G4double tkin = targetNucleus.Cinema( ek );
74  ek += tkin;
75  currentParticle.SetKineticEnergy( ek );
76  G4double et = ek + amas;
77  G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
78  G4double pp = currentParticle.GetMomentum().mag();
79  if( pp > 0.0 )
80  {
81  G4ThreeVector momentum = currentParticle.GetMomentum();
82  currentParticle.SetMomentum( momentum * (p/pp) );
83  }
84 
85  // calculate black track energies
86 
87  tkin = targetNucleus.EvaporationEffects( ek );
88  ek -= tkin;
89  currentParticle.SetKineticEnergy( ek );
90  et = ek + amas;
91  p = std::sqrt( std::abs((et-amas)*(et+amas)) );
92  pp = currentParticle.GetMomentum().mag();
93  if( pp > 0.0 )
94  {
95  G4ThreeVector momentum = currentParticle.GetMomentum();
96  currentParticle.SetMomentum( momentum * (p/pp) );
97  }
98 
99  G4ReactionProduct modifiedOriginal = currentParticle;
100 
101  currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
102  targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
103  G4bool incidentHasChanged = false;
104  G4bool targetHasChanged = false;
105  G4bool quasiElastic = false;
106  G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
107  G4int vecLen = 0;
108  vec.Initialize( 0 );
109 
110  const G4double cutOff = 0.1*MeV;
111  if( currentParticle.GetKineticEnergy() > cutOff )
112  Cascade( vec, vecLen,
113  originalIncident, currentParticle, targetParticle,
114  incidentHasChanged, targetHasChanged, quasiElastic );
115 
116  CalculateMomenta( vec, vecLen,
117  originalIncident, originalTarget, modifiedOriginal,
118  targetNucleus, currentParticle, targetParticle,
119  incidentHasChanged, targetHasChanged, quasiElastic );
120 
121  SetUpChange( vec, vecLen,
122  currentParticle, targetParticle,
123  incidentHasChanged );
124 
125  delete originalTarget;
126  return &theParticleChange;
127 }
128 
129 
132  G4int& vecLen,
133  const G4HadProjectile *originalIncident,
134  G4ReactionProduct &currentParticle,
135  G4ReactionProduct &targetParticle,
136  G4bool &incidentHasChanged,
137  G4bool &targetHasChanged,
138  G4bool &quasiElastic )
139 {
140  // Derived from H. Fesefeldt's original FORTRAN code CASOM
141  // OmegaMinus undergoes interaction with nucleon within a nucleus. Check if it is
142  // energetically possible to produce pions/kaons. In not, assume nuclear excitation
143  // occurs and input particle is degraded in energy. No other particles are produced.
144  // If reaction is possible, find the correct number of pions/protons/neutrons
145  // produced using an interpolation to multiplicity data. Replace some pions or
146  // protons/neutrons by kaons or strange baryons according to the average
147  // multiplicity per Inelastic reaction.
148 
149  const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass();
150  const G4double etOriginal = originalIncident->GetTotalEnergy();
151 // const G4double pOriginal = originalIncident->GetTotalMomentum();
152  const G4double targetMass = targetParticle.GetMass();
153  G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
154  targetMass*targetMass +
155  2.0*targetMass*etOriginal );
156  G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
157  if( availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass() )
158  {
159  quasiElastic = true;
160  return;
161  }
162  static G4ThreadLocal G4bool first = true;
163  const G4int numMul = 1200;
164  const G4int numSec = 60;
165  static G4ThreadLocal G4double protmul[numMul], protnorm[numSec]; // proton constants
166  static G4ThreadLocal G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
167  // np = number of pi+, nneg = number of pi-, nz = number of pi0
168  G4int counter, nt=0, np=0, nneg=0, nz=0;
169  G4double test;
170  const G4double c = 1.25;
171  const G4double b[] = { 0.70, 0.70 };
172  if( first ) // compute normalization constants, this will only be Done once
173  {
174  first = false;
175  G4int i;
176  for( i=0; i<numMul; ++i )protmul[i] = 0.0;
177  for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
178  counter = -1;
179  for( np=0; np<(numSec/3); ++np )
180  {
181  for( nneg=std::max(0,np-1); nneg<=(np+1); ++nneg )
182  {
183  for( nz=0; nz<numSec/3; ++nz )
184  {
185  if( ++counter < numMul )
186  {
187  nt = np+nneg+nz;
188  if( nt > 0 )
189  {
190  protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
191  protnorm[nt-1] += protmul[counter];
192  }
193  }
194  }
195  }
196  }
197  for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
198  for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
199  counter = -1;
200  for( np=0; np<numSec/3; ++np )
201  {
202  for( nneg=np; nneg<=(np+2); ++nneg )
203  {
204  for( nz=0; nz<numSec/3; ++nz )
205  {
206  if( ++counter < numMul )
207  {
208  nt = np+nneg+nz;
209  if( (nt>0) && (nt<=numSec) )
210  {
211  neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
212  neutnorm[nt-1] += neutmul[counter];
213  }
214  }
215  }
216  }
217  }
218  for( i=0; i<numSec; ++i )
219  {
220  if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
221  if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
222  }
223  } // end of initialization
224 
225  const G4double expxu = 82.; // upper bound for arg. of exp
226  const G4double expxl = -expxu; // lower bound for arg. of exp
233 
234  // energetically possible to produce pion(s) --> inelastic scattering
235 
236  G4double n, anpn;
237  GetNormalizationConstant( availableEnergy, n, anpn );
238  G4double ran = G4UniformRand();
239  G4double dum, excs = 0.0;
240  if( targetParticle.GetDefinition() == aProton )
241  {
242  counter = -1;
243  for( np=0; np<numSec/3 && ran>=excs; ++np )
244  {
245  for( nneg=std::max(0,np-1); nneg<=(np+1) && ran>=excs; ++nneg )
246  {
247  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
248  {
249  if( ++counter < numMul )
250  {
251  nt = np+nneg+nz;
252  if( nt > 0 )
253  {
254  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
255  dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
256  if( std::fabs(dum) < 1.0 )
257  {
258  if( test >= 1.0e-10 )excs += dum*test;
259  }
260  else
261  excs += dum*test;
262  }
263  }
264  }
265  }
266  }
267  if( ran >= excs ) // 3 previous loops continued to the end
268  {
269  quasiElastic = true;
270  return;
271  }
272  np--; nneg--; nz--;
273  }
274  else // target must be a neutron
275  {
276  counter = -1;
277  for( np=0; np<numSec/3 && ran>=excs; ++np )
278  {
279  for( nneg=np; nneg<=(np+2) && ran>=excs; ++nneg )
280  {
281  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
282  {
283  if( ++counter < numMul )
284  {
285  nt = np+nneg+nz;
286  if( (nt>=1) && (nt<=numSec) )
287  {
288  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
289  dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
290  if( std::fabs(dum) < 1.0 )
291  {
292  if( test >= 1.0e-10 )excs += dum*test;
293  }
294  else
295  excs += dum*test;
296  }
297  }
298  }
299  }
300  }
301  if( ran >= excs ) // 3 previous loops continued to the end
302  {
303  quasiElastic = true;
304  return;
305  }
306  np--; nneg--; nz--;
307  }
308  // number of secondary mesons determined by kno distribution
309  // check for total charge of final state mesons to determine
310  // the kind of baryons to be produced, taking into account
311  // charge and strangeness conservation
312  //
313  G4int nvefix = 0;
314  if( targetParticle.GetDefinition() == aProton )
315  {
316  if( nneg > np )
317  {
318  if( nneg == np+1 )
319  {
320  currentParticle.SetDefinitionAndUpdateE( aXiZero );
321  nvefix = 1;
322  }
323  else
324  {
325  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
326  nvefix = 2;
327  }
328  incidentHasChanged = true;
329  }
330  else if( nneg < np )
331  {
332  targetParticle.SetDefinitionAndUpdateE( aNeutron );
333  targetHasChanged = true;
334  }
335  }
336  else // target is a neutron
337  {
338  if( np+1 < nneg )
339  {
340  if( nneg == np+2 )
341  {
342  currentParticle.SetDefinitionAndUpdateE( aXiZero );
343  incidentHasChanged = true;
344  nvefix = 1;
345  }
346  else // charge mismatch
347  {
348  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
349  incidentHasChanged = true;
350  nvefix = 2;
351  }
352  targetParticle.SetDefinitionAndUpdateE( aProton );
353  targetHasChanged = true;
354  }
355  else if( nneg == np+1 )
356  {
357  targetParticle.SetDefinitionAndUpdateE( aProton );
358  targetHasChanged = true;
359  }
360  }
361 
362  SetUpPions(np, nneg, nz, vec, vecLen);
363  for (G4int i = 0; i < vecLen && nvefix > 0; ++i) {
364  if (vec[i]->GetDefinition() == aPiMinus) {
365  if( nvefix >= 1 )vec[i]->SetDefinitionAndUpdateE(aKaonMinus);
366  --nvefix;
367  }
368  }
369 
370  return;
371 }
372 
373  /* end of file */
374 
static const double MeV
Definition: G4SIunits.hh:193
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
CLHEP::Hep3Vector G4ThreeVector
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
void SetMomentum(const G4double x, const G4double y, const G4double z)
const G4String & GetName() const
Definition: G4Material.hh:176
const G4double pi
void SetSide(const G4int sid)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
G4ParticleDefinition * GetDefinition() const
#define G4ThreadLocal
Definition: tls.hh:84
void Initialize(G4int items)
Definition: G4FastVector.hh:63
int G4int
Definition: G4Types.hh:78
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
const G4String & GetParticleName() const
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
void SetStatusChange(G4HadFinalStateStatus aS)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
static G4XiZero * XiZero()
Definition: G4XiZero.cc:106
const G4ParticleDefinition * GetDefinition() const
#define G4UniformRand()
Definition: Randomize.hh:95
G4GLOB_DLL std::ostream G4cout
const G4ParticleDefinition * GetDefinition() const
bool G4bool
Definition: G4Types.hh:79
G4double GetKineticEnergy() const
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
void Cascade(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool &quasiElastic)
void SetDefinitionAndUpdateE(const G4ParticleDefinition *aParticleDefinition)
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
const G4int n
const G4LorentzVector & Get4Momentum() const
void SetEnergyChange(G4double anEnergy)
G4double GetPDGMass() const
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:98
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
#define G4endl
Definition: G4ios.hh:61
const G4Material * GetMaterial() const
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:108
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
double G4double
Definition: G4Types.hh:76
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
void SetMomentumChange(const G4ThreeVector &aV)
G4double GetMass() const
G4double GetTotalEnergy() const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)