49 :
G4VEmModel(nam),fParticleChange(0),smallEnergy(4.*
MeV),isInitialised(false),
50 crossSectionHandler(0),meanFreePathTable(0)
65 G4cout <<
"Triplet Gamma conversion is constructed " <<
G4endl
87 G4cout <<
"Calling G4BoldyshevTripletModel::Initialise()" <<
G4endl;
99 G4String crossSectionFile =
"tripdata/pp-trip-cs-";
105 G4cout <<
"Loaded cross section files for Livermore GammaConversion" <<
G4endl;
106 G4cout <<
"To obtain the total cross section this should be used only " << G4endl
107 <<
"in connection with G4NuclearGammaConversion " <<
G4endl;
111 G4cout <<
"Livermore Electron Gamma Conversion model is initialized " << G4endl
132 G4cout <<
"Calling ComputeCrossSectionPerAtom() of G4BoldyshevTripletModel"
135 if (GammaEnergy < lowEnergyLimit || GammaEnergy >
highEnergyLimit)
return 0;
154 G4cout <<
"Calling SampleSecondaries() of G4BoldyshevTripletModel" <<
G4endl;
162 G4double positronTotEnergy, electronTotEnergy, thetaEle, thetaPos;
163 G4double ener_re=0., theta_re, phi_re, phi;
167 G4double energyThreshold = sqrt(2.)*electron_mass_c2;
168 energyThreshold = 1.1*electron_mass_c2;
171 G4double momentumThreshold_c = sqrt(energyThreshold * energyThreshold - electron_mass_c2*electron_mass_c2);
172 G4double momentumThreshold_N = momentumThreshold_c/electron_mass_c2;
176 G4double SigmaTot = (28./9.) * std::log ( 2.* photonEnergy / electron_mass_c2 ) - 218. / 27. ;
177 G4double X_0 = 2. * ( sqrt(momentumThreshold_N*momentumThreshold_N + 1) -1 );
178 G4double SigmaQ = (82./27. - (14./9.) * log (X_0) + 4./15.*X_0 - 0.0348 * X_0 * X_0);
182 if (recoilProb >= SigmaQ/SigmaTot)
185 G4double cosThetaMax = ( ( energyThreshold - electron_mass_c2 ) / (momentumThreshold_c) + electron_mass_c2*
186 ( energyThreshold + electron_mass_c2 ) / (photonEnergy*momentumThreshold_c) );
192 G4double are, bre, loga, f1_re, greject, cost;
198 cost = pow(cosThetaMax,r1);
199 theta_re = acos(cost);
200 are = 1./(14.*cost*cost);
201 bre = (1.-5.*cost*cost)/(2.*cost);
202 loga = log((1.+ cost)/(1.- cost));
203 f1_re = 1. - bre*loga;
211 }
while(greject < r2);
223 G4double fp = 1. - sint2*loga/(2.*cost) ;
224 rt = (1.-cos(2.*phi_re)*fp/f1_re)/(2.*
pi) ;
230 G4double S = electron_mass_c2*(2.* photonEnergy + electron_mass_c2);
231 G4double D2 = 4.*S * electron_mass_c2*electron_mass_c2
232 + (S - electron_mass_c2*electron_mass_c2)
233 *(S - electron_mass_c2*electron_mass_c2)*sin(theta_re)*sin(theta_re);
234 ener_re = electron_mass_c2 * (S + electron_mass_c2*electron_mass_c2)/sqrt(D2);
238 G4double momentum_recoil = 2* (electron_mass_c2) * (std::cos(theta_re)/(std::sin(phi_re)*std::sin(phi_re)));
239 G4double ener_recoil = sqrt( momentum_recoil*momentum_recoil + electron_mass_c2*electron_mass_c2);
240 ener_re = ener_recoil;
245 G4double dxEle_re=sin(theta_re)*std::cos(phi_re),dyEle_re=sin(theta_re)*std::sin(phi_re), dzEle_re=cos(theta_re);
249 G4ThreeVector electronRDirection (dxEle_re, dyEle_re, dzEle_re);
250 electronRDirection.rotateUz(photonDirection);
254 electronRKineEnergy);
255 fvect->push_back(particle3);
268 G4double t = 0.5*log(momentumThreshold_N + sqrt(momentumThreshold_N*momentumThreshold_N+1));
272 G4double J1 = 0.5*(t*cosh(t)/sinh(t) - log(2.*sinh(t)));
273 G4double J2 = (-2./3.)*log(2.*sinh(t)) + t*cosh(t)/sinh(t) + (sinh(t)-t*pow(cosh(t),3))/(3.*pow(sinh(t),3));
280 G4double b1 = 16. - 3.*b - 36.*b*re*n + 36.*b*pow(re,2.)*pow(n,2.) +
283 G4double c1 = (-6. + 12.*re*n + b + 2*
a)*pow(b,2.);
284 epsilon = (pow(c1,1./3.))/(2.*b) + (b-4.)/(2.*pow(c1,1./3.))+0.5;
286 G4double photonEnergy1 = photonEnergy - ener_re ;
287 positronTotEnergy = epsilon*photonEnergy1;
288 electronTotEnergy = photonEnergy1 - positronTotEnergy;
290 G4double momento_e = sqrt(electronTotEnergy*electronTotEnergy -
291 electron_mass_c2*electron_mass_c2) ;
292 G4double momento_p = sqrt(positronTotEnergy*positronTotEnergy -
293 electron_mass_c2*electron_mass_c2) ;
295 thetaEle = acos((sqrt(p0*p0/(momento_e*momento_e) +1.)- p0/momento_e)) ;
296 thetaPos = acos((sqrt(p0*p0/(momento_p*momento_p) +1.)- p0/momento_p)) ;
299 G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle);
300 G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos);
307 G4double electronKineEnergy =
std::max(0.,electronTotEnergy - electron_mass_c2) ;
312 electronDirection.rotateUz(photonDirection);
319 G4double positronKineEnergy =
std::max(0.,positronTotEnergy - electron_mass_c2) ;
324 positronDirection.rotateUz(photonDirection);
328 positronDirection, positronKineEnergy);
332 fvect->push_back(particle1);
333 fvect->push_back(particle2);
G4double LowEnergyLimit() const
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
G4double GetKineticEnergy() const
CLHEP::Hep3Vector G4ThreeVector
G4double HighEnergyLimit() const
G4BoldyshevTripletModel(const G4ParticleDefinition *p=0, const G4String &nam="BoldyshevTriplet")
G4double asinh(G4double value)
virtual ~G4BoldyshevTripletModel()
G4ParticleChangeForGamma * fParticleChange
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
void SetHighEnergyLimit(G4double)
G4double FindValue(G4int Z, G4double e) const
G4GLOB_DLL std::ostream G4cout
const G4ThreeVector & GetMomentumDirection() const
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
void Initialise(G4VDataSetAlgorithm *interpolation=0, G4double minE=250 *CLHEP::eV, G4double maxE=100 *CLHEP::GeV, G4int numberOfBins=200, G4double unitE=CLHEP::MeV, G4double unitData=CLHEP::barn, G4int minZ=1, G4int maxZ=99)
static G4Positron * Positron()
T max(const T t1, const T t2)
brief Return the largest of the two arguments
void LoadData(const G4String &dataFile)
G4VCrossSectionHandler * crossSectionHandler
static G4Electron * Electron()
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeTrackStatus(G4TrackStatus status)
G4ThreeVector G4ParticleMomentum
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX)
G4ParticleChangeForGamma * GetParticleChangeForGamma()