Geant4  10.01
G4ExcitationHandler.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4ExcitationHandler.cc 87443 2014-12-04 12:26:31Z gunter $
27 //
28 // Hadronic Process: Nuclear De-excitations
29 // by V. Lara (May 1998)
30 //
31 //
32 // Modified:
33 // 30 June 1998 by V. Lara:
34 // -Modified the Transform method for use G4ParticleTable and
35 // therefore G4IonTable. It makes possible to convert all kind
36 // of fragments (G4Fragment) produced in deexcitation to
37 // G4DynamicParticle
38 // -It uses default algorithms for:
39 // Evaporation: G4Evaporation
40 // MultiFragmentation: G4StatMF
41 // Fermi Breakup model: G4FermiBreakUp
42 // 24 Jul 2008 by M. A. Cortes Giraldo:
43 // -Max Z,A for Fermi Break-Up turns to 9,17 by default
44 // -BreakItUp() reorganised and bug in Evaporation loop fixed
45 // -Transform() optimised
46 // (September 2008) by J. M. Quesada. External choices have been added for :
47 // -inverse cross section option (default OPTxs=3)
48 // -superimposed Coulomb barrier (if useSICB is set true, by default it is false)
49 // September 2009 by J. M. Quesada:
50 // -according to Igor Pshenichnov, SMM will be applied (just in case) only once.
51 // 27 Nov 2009 by V.Ivanchenko:
52 // -cleanup the logic, reduce number internal vectors, fixed memory leak.
53 // 11 May 2010 by V.Ivanchenko:
54 // -FermiBreakUp activated, used integer Z and A, used BreakUpFragment method for
55 // final photon deexcitation; used check on adundance of a fragment, decay
56 // unstable fragments with A <5
57 // 22 March 2011 by V.Ivanchenko: general cleanup and addition of a condition:
58 // products of Fermi Break Up cannot be further deexcited by this model
59 // 30 March 2011 by V.Ivanchenko removed private inline methods, moved Set methods
60 // to the source
61 // 23 January 2012 by V.Ivanchenko general cleanup including destruction of
62 // objects, propagate G4PhotonEvaporation pointer to G4Evaporation class and
63 // not delete it here
64 
65 #include <list>
66 
67 #include "G4ExcitationHandler.hh"
68 #include "G4SystemOfUnits.hh"
69 #include "G4LorentzVector.hh"
70 #include "G4NistManager.hh"
71 #include "G4ParticleTable.hh"
72 #include "G4ParticleTypes.hh"
73 #include "G4Ions.hh"
74 
75 #include "G4VMultiFragmentation.hh"
76 #include "G4VFermiBreakUp.hh"
77 #include "G4VFermiFragment.hh"
78 
79 #include "G4VEvaporation.hh"
80 #include "G4VEvaporationChannel.hh"
81 #include "G4VPhotonEvaporation.hh"
82 #include "G4Evaporation.hh"
83 #include "G4StatMF.hh"
84 #include "G4PhotonEvaporation.hh"
85 #include "G4FermiBreakUp.hh"
86 #include "G4FermiFragmentsPool.hh"
87 #include "G4Pow.hh"
88 
90  maxZForFermiBreakUp(9),maxAForFermiBreakUp(17),minEForMultiFrag(4*GeV),
91  minExcitation(keV),OPTxs(3),useSICB(false),isEvapLocal(true)
92 {
95 
101  SetParameters();
103  theResults.resize(60,0);
104  results.resize(30,0);
105  theEvapList.resize(30,0);
106  thePhotoEvapList.resize(10,0);
107 }
108 
110 {
111  if(isEvapLocal) { delete theEvaporation; }
112  delete theMultiFragmentation;
113  delete theFermiModel;
114 }
115 
117 {
118  //for inverse cross section choice
120  //for the choice of superimposed Coulomb Barrier for inverse cross sections
124 }
125 
128 {
129  //G4cout << "@@@@@@@@@@ Start G4Excitation Handler @@@@@@@@@@@@@" << G4endl;
130  // Variables existing until end of method
131  G4Fragment * theInitialStatePtr = new G4Fragment(theInitialState);
132  //G4cout << theInitialState << G4endl;
133 
134  // pointer to fragment vector which receives temporal results
135  G4FragmentVector * theTempResult = 0;
136 
137  theResults.clear();
138  thePhotoEvapList.clear();
139  theEvapList.clear();
140 
141  // Variables to describe the excited configuration
142  G4double exEnergy = theInitialState.GetExcitationEnergy();
143  G4int A = theInitialState.GetA_asInt();
144  G4int Z = theInitialState.GetZ_asInt();
145 
146  // In case A <= 1 the fragment will not perform any nucleon emission
147  if (A <= 1) {
148  theResults.push_back( theInitialStatePtr );
149 
150  // check if a fragment is stable
151  } else if(exEnergy < minExcitation && nist->GetIsotopeAbundance(Z, A) > 0.0) {
152  theResults.push_back( theInitialStatePtr );
153 
154  // JMQ 150909: first step in de-excitation is treated separately
155  // Fragments after the first step are stored in theEvapList
156  } else {
158  || exEnergy <= minEForMultiFrag*A) {
159  theEvapList.push_back(theInitialStatePtr);
160 
161  // Statistical Multifragmentation will take place only once
162  } else {
163  theTempResult = theMultiFragmentation->BreakItUp(theInitialState);
164  if(!theTempResult) {
165  theEvapList.push_back(theInitialStatePtr);
166  } else {
167  size_t nsec = theTempResult->size();
168 
169  // no fragmentation
170  if(0 == nsec) {
171  theEvapList.push_back(theInitialStatePtr);
172 
173  // secondary are produced - sort out secondary fragments
174  } else {
175  G4bool deletePrimary = true;
176  G4FragmentVector::iterator j;
177  for (j = theTempResult->begin(); j != theTempResult->end(); ++j) {
178  if((*j) == theInitialStatePtr) { deletePrimary = false; }
179  A = (*j)->GetA_asInt();
180 
181  // gamma, p, n
182  if(A <= 1) {
183  theResults.push_back(*j);
184 
185  // Analyse fragment A > 1
186  } else {
187  G4double exEnergy1 = (*j)->GetExcitationEnergy();
188 
189  // cold fragments
190  if(exEnergy1 < minExcitation) {
191  Z = (*j)->GetZ_asInt();
192  if(nist->GetIsotopeAbundance(Z, A) > 0.0) {
193  theResults.push_back(*j); // stable fragment
194  } else {
195  theEvapList.push_back(*j);
196  }
197  // hot fragments are unstable
198  } else {
199  theEvapList.push_back(*j);
200  }
201  }
202  }
203  if( deletePrimary ) { delete theInitialStatePtr; }
204  }
205  delete theTempResult; // end multifragmentation
206  }
207  }
208  }
209  /*
210  G4cout << "## After first step " << theEvapList.size() << " for evap; "
211  << thePhotoEvapList.size() << " for photo-evap; "
212  << theResults.size() << " results. " << G4endl;
213  */
214  // -----------------------------------
215  // FermiBreakUp and De-excitation loop
216  // -----------------------------------
217 
218  std::vector<G4Fragment*>::iterator iList;
219  for (iList = theEvapList.begin(); iList != theEvapList.end(); ++iList) {
220  //G4cout << "Next evaporate: " << G4endl;
221  //G4cout << *iList << G4endl;
222  G4Fragment* frag = *iList;
223  A = frag->GetA_asInt();
224  Z = frag->GetZ_asInt();
225  results.clear();
226 
227  // Fermi Break-Up
228  if(A < maxAForFermiBreakUp && Z < maxZForFermiBreakUp && Z > 0 && A > Z) {
229  G4double etot = frag->GetExcitationEnergy() + frag->GetGroundStateMass();
230  if(thePool->IsApplicable(Z, A, etot)) {
232  size_t nsec = results.size();
233  //G4cout << "FermiBreakUp Nsec= " << nsec << G4endl;
234  // FBU takes care to delete input fragment or add it to the results
235  // results may be excited - photo-evaporation should be applied
236  if(0 < nsec) {
237  for(size_t j=0; j<nsec; ++j) {
238  exEnergy = results[j]->GetExcitationEnergy();
239  if(exEnergy < minExcitation) { theResults.push_back(results[j]); }
240  else { thePhotoEvapList.push_back(results[j]); }
241  }
242  continue;
243  }
244  }
245  }
246  // apply Evaporation, residual nucleus is always added to the results
248  size_t nsec = results.size();
249  //G4cout << "Evaporation Nsec= " << nsec << G4endl;
250 
251  // no evaporation
252  if(1 >= nsec) {
253  theResults.push_back(frag);
254  continue;
255  }
256 
257  // Sort out secondary fragments
258  for (size_t j = 0; j<nsec; ++j) {
259  //G4cout << "Evaporated product #" << j << G4endl;
260  //G4cout << results[j] << G4endl;
261  A = results[j]->GetA_asInt();
262  //G4cout << "A= " << A << G4endl;
263  if(A <= 1) {
264  theResults.push_back(results[j]); // gamma, p, n
265  continue;
266  }
267  exEnergy = results[j]->GetExcitationEnergy();
268 
269  // hot fragment
270  if(exEnergy >= minExcitation) {
271  theEvapList.push_back(results[j]);
272 
273  // cold fragment
274  } else {
275  Z = results[j]->GetZ_asInt();
276 
277  // natural isotope
278  if(nist->GetIsotopeAbundance(Z, A) > 0.0) {
279  theResults.push_back(results[j]); // stable fragment
280 
281  } else {
282  theEvapList.push_back(results[j]);
283  }
284  }
285  } // end of loop on secondary
286  } // end of the loop over theEvapList
287  /*
288  G4cout << "## After 2nd step " << theEvapList.size() << " was evap; "
289  << thePhotoEvapList.size() << " for photo-evap; "
290  << theResults.size() << " results. " << G4endl;
291  */
292  // -----------------------
293  // Photon-Evaporation loop
294  // -----------------------
295 
296  // at this point only photon evaporation is possible
297  for(iList = thePhotoEvapList.begin(); iList != thePhotoEvapList.end(); ++iList) {
298  //G4cout << "Next photon evaporate: " << thePhotonEvaporation << G4endl;
299  //G4cout << *iList << G4endl;
300  exEnergy = (*iList)->GetExcitationEnergy();
301 
302  // photon de-excitation only for hot fragments
303  if(exEnergy > minExcitation) {
305  }
306 
307  // priamry fragment is kept
308  theResults.push_back(*iList);
309 
310  } // end of photon-evaporation loop
311  /*
312  G4cout << "## After 3d step " << theEvapList.size() << " was evap; "
313  << thePhotoEvapList.size() << " was photo-evap; "
314  << theResults.size() << " results. " << G4endl;
315  */
316  G4ReactionProductVector * theReactionProductVector =
318 
319  // MAC (24/07/08)
320  // To optimise the storing speed, we reserve space in memory for the vector
321  theReactionProductVector->reserve( theResults.size() );
322 
323  G4int theFragmentA, theFragmentZ;
324 
325  for (iList = theResults.begin(); iList != theResults.end(); ++iList) {
326  //G4cout << "Evaporated product #" << j << G4endl;
327  //G4cout << (*iList) << G4endl;
328 
329  theFragmentA = (*iList)->GetA_asInt();
330  theFragmentZ = (*iList)->GetZ_asInt();
331  G4double etot= (*iList)->GetMomentum().e();
332  G4double eexc = 0.0;
333  const G4ParticleDefinition* theKindOfFragment = 0;
334  if (theFragmentA == 0) { // photon or e-
335  theKindOfFragment = (*iList)->GetParticleDefinition();
336  } else if (theFragmentA == 1 && theFragmentZ == 0) { // neutron
337  theKindOfFragment = G4Neutron::NeutronDefinition();
338  } else if (theFragmentA == 1 && theFragmentZ == 1) { // proton
339  theKindOfFragment = G4Proton::ProtonDefinition();
340  } else if (theFragmentA == 2 && theFragmentZ == 1) { // deuteron
341  theKindOfFragment = G4Deuteron::DeuteronDefinition();
342  } else if (theFragmentA == 3 && theFragmentZ == 1) { // triton
343  theKindOfFragment = G4Triton::TritonDefinition();
344  } else if (theFragmentA == 3 && theFragmentZ == 2) { // helium3
345  theKindOfFragment = G4He3::He3Definition();
346  } else if (theFragmentA == 4 && theFragmentZ == 2) { // alpha
347  theKindOfFragment = G4Alpha::AlphaDefinition();;
348  } else {
349 
350  // fragment
351  eexc = (*iList)->GetExcitationEnergy();
352  if(eexc < minExcitation) { eexc = 0.0; }
353  theKindOfFragment = theTableOfIons->GetIon(theFragmentZ,theFragmentA,eexc);
354  /*
355  G4cout << "### Find ion Z= " << theFragmentZ << " A= " << theFragmentA
356  << " Eexc(MeV)= " << eexc/MeV << " " << theKindOfFragment << G4endl;
357  */
358  }
359  // fragment identified
360  if(theKindOfFragment) {
361  G4ReactionProduct * theNew = new G4ReactionProduct(theKindOfFragment);
362  theNew->SetMomentum((*iList)->GetMomentum().vect());
363  theNew->SetTotalEnergy(etot);
364  theNew->SetFormationTime((*iList)->GetCreationTime());
365  theReactionProductVector->push_back(theNew);
366 
367  // fragment not found out ground state is created
368  } else {
369  theKindOfFragment = theTableOfIons->GetIon(theFragmentZ,theFragmentA,0.0);
370  if(theKindOfFragment) {
371  G4ThreeVector mom(0.0,0.0,0.0);
372  G4double ionmass = theKindOfFragment->GetPDGMass();
373  if(etot <= ionmass) {
374  etot = ionmass;
375  } else {
376  G4double ptot = std::sqrt((etot - ionmass)*(etot + ionmass));
377  mom = ((*iList)->GetMomentum().vect().unit())*ptot;
378  }
379  G4ReactionProduct * theNew = new G4ReactionProduct(theKindOfFragment);
380  theNew->SetMomentum(mom);
381  theNew->SetTotalEnergy(etot);
382  theNew->SetFormationTime((*iList)->GetCreationTime());
383  theReactionProductVector->push_back(theNew);
384  /*
385  G4cout << "### Find ion Z= " << theFragmentZ << " A= " << theFragmentA
386  << " ground state, energy corrected " << theKindOfFragment << G4endl;
387  */
388  } else {
389  /*
390  G4cout << "### Find ion Z= " << theFragmentZ
391  << " A= " << theFragmentA << " failed " << G4endl;
392  */
393  }
394  }
395  delete (*iList);
396  }
397  return theReactionProductVector;
398 }
399 
401 {
402  if(ptr && ptr != theEvaporation) {
403  delete theEvaporation;
404  theEvaporation = ptr;
406  SetParameters();
407  isEvapLocal = false;
408  }
409 }
410 
411 void
413 {
414  if(ptr && ptr != theMultiFragmentation) {
415  delete theMultiFragmentation;
416  theMultiFragmentation = ptr;
417  }
418 }
419 
421 {
422  if(ptr && ptr != theFermiModel) {
423  delete theFermiModel;
424  theFermiModel = ptr;
425  }
426 }
427 
428 void
430 {
431  if(ptr && ptr != thePhotonEvaporation) {
432  thePhotonEvaporation = ptr;
434  ptr->Initialise();
435  }
436 }
437 
439 {
440  maxZForFermiBreakUp = aZ;
441 }
442 
444 {
445  maxAForFermiBreakUp = anA;
446 }
447 
449 {
452 }
453 
455 {
456  minEForMultiFrag = anE;
457 }
458 void G4ExcitationHandler::ModelDescription(std::ostream& outFile) const
459 {
460  outFile << "G4ExcitationHandler description\n"
461  << "This class samples de-excitation of excited nucleus using\n"
462  << "Fermi Break-up model for light fragments (Z < 9, A < 17), "
463  << "evaporation, fission, and photo-evaporation models. Evaporated\n"
464  << "particle may be proton, neutron, and other light fragment \n"
465  << "(Z < 13, A < 29). During photon evaporation produced gamma \n"
466  << "or electrons due to internal conversion \n";
467 }
468 
469 
470 
471 
472 
473 
void SetOPTxs(G4int opt)
static G4Pow * GetInstance()
Definition: G4Pow.cc:55
static G4Triton * TritonDefinition()
Definition: G4Triton.cc:90
static G4He3 * He3Definition()
Definition: G4He3.cc:89
void ModelDescription(std::ostream &outFile) const
std::vector< G4Fragment * > theResults
CLHEP::Hep3Vector G4ThreeVector
virtual G4bool BreakUpChain(G4FragmentVector *theResult, G4Fragment *theNucleus)
G4VEvaporationChannel * GetPhotonEvaporation()
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
Definition: G4IonTable.cc:463
static G4Proton * ProtonDefinition()
Definition: G4Proton.cc:88
virtual void BreakFragment(G4FragmentVector *, G4Fragment *theNucleus)
void SetMinEForMultiFrag(G4double anE)
virtual G4FragmentVector * BreakItUp(const G4Fragment &theNucleus)=0
virtual void Initialise()
int G4int
Definition: G4Types.hh:78
static G4NistManager * Instance()
G4ReactionProductVector * BreakItUp(const G4Fragment &theInitialState)
std::vector< G4Fragment * > results
std::vector< G4ReactionProduct * > G4ReactionProductVector
std::vector< G4Fragment * > thePhotoEvapList
G4bool IsApplicable(G4int Z, G4int A, G4double mass) const
G4IonTable * GetIonTable() const
G4int GetA_asInt() const
Definition: G4Fragment.hh:243
void UseSICB(G4bool use)
std::vector< G4Fragment * > theEvapList
bool G4bool
Definition: G4Types.hh:79
void SetFermiModel(G4VFermiBreakUp *ptr)
void SetTotalEnergy(const G4double en)
std::vector< G4Fragment * > G4FragmentVector
Definition: G4Fragment.hh:65
void SetMultiFragmentation(G4VMultiFragmentation *ptr)
G4VEvaporationChannel * thePhotonEvaporation
G4FermiFragmentsPool * thePool
static const double GeV
Definition: G4SIunits.hh:196
G4double GetIsotopeAbundance(G4int Z, G4int N) const
G4double GetGroundStateMass() const
Definition: G4Fragment.hh:265
G4VMultiFragmentation * theMultiFragmentation
static const G4double A[nN]
G4VFermiBreakUp * theFermiModel
virtual void BreakFragment(G4FragmentVector *, G4Fragment *theNucleus)=0
void SetMaxZForFermiBreakUp(G4int aZ)
G4double GetPDGMass() const
static G4ParticleTable * GetParticleTable()
virtual void SetPhotonEvaporation(G4VEvaporationChannel *ptr)
void SetMaxAandZForFermiBreakUp(G4int anA, G4int aZ)
G4int GetZ_asInt() const
Definition: G4Fragment.hh:248
void SetEvaporation(G4VEvaporation *ptr)
G4VEvaporation * theEvaporation
void SetMaxAForFermiBreakUp(G4int anA)
static const double keV
Definition: G4SIunits.hh:195
void SetFormationTime(G4double aTime)
double G4double
Definition: G4Types.hh:76
static G4FermiFragmentsPool * Instance()
void SetPhotonEvaporation(G4VEvaporationChannel *ptr)
static G4Deuteron * DeuteronDefinition()
Definition: G4Deuteron.cc:89
static G4Alpha * AlphaDefinition()
Definition: G4Alpha.cc:84
static G4Neutron * NeutronDefinition()
Definition: G4Neutron.cc:99
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:260