Geant4  10.01
G4NeutronRadCapture.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4NeutronRadCapture.cc 79977 2014-03-27 15:16:59Z gcosmo $
27 //
28 //
29 // Physics model class G4NeutronRadCapture
30 // Created: 31 August 2009
31 // Author V.Ivanchenko
32 //
33 // Modified:
34 // 09.09.2010 V.Ivanchenko added usage of G4PhotonEvaporation
35 //
36 
37 #include "G4NeutronRadCapture.hh"
38 #include "G4SystemOfUnits.hh"
39 #include "G4ParticleDefinition.hh"
40 #include "G4Fragment.hh"
41 #include "G4FragmentVector.hh"
42 #include "G4NucleiProperties.hh"
43 #include "G4PhotonEvaporation.hh"
44 #include "G4DynamicParticle.hh"
45 #include "G4ParticleTable.hh"
46 #include "G4IonTable.hh"
47 #include "G4Deuteron.hh"
48 #include "G4Triton.hh"
49 #include "G4He3.hh"
50 #include "G4Alpha.hh"
51 
53  : G4HadronicInteraction("nRadCapture")
54 {
55  lowestEnergyLimit = 0.1*eV;
56  minExcitation = 1*keV;
57  SetMinEnergy( 0.0*GeV );
58  SetMaxEnergy( 100.*TeV );
60  //photonEvaporation = 0;
62 }
63 
65 {
66  delete photonEvaporation;
67 }
68 
70  const G4HadProjectile& aTrack, G4Nucleus& theNucleus)
71 {
74 
75  G4int A = theNucleus.GetA_asInt();
76  G4int Z = theNucleus.GetZ_asInt();
77 
78  G4double time = aTrack.GetGlobalTime();
79 
80  // Create initial state
82  G4LorentzVector lv0(0.0,0.0,0.0,m1);
83  G4LorentzVector lv1 = aTrack.Get4Momentum() + lv0;
84 
85  // simplified method of 1 gamma emission
86  if(A <= 3) {
87 
88  G4ThreeVector bst = lv1.boostVector();
89  G4double M = lv1.mag();
90 
91  ++A;
93  if(M - mass <= lowestEnergyLimit) {
94  return &theParticleChange;
95  }
96 
97  if (verboseLevel > 1) {
98  G4cout << "G4NeutronRadCapture::DoIt: Eini(MeV)="
99  << aTrack.GetKineticEnergy()/MeV << " Eexc(MeV)= "
100  << (M - mass)/MeV
101  << " Z= " << Z << " A= " << A << G4endl;
102  }
103  G4double e1 = (M - mass)*(M + mass)/(2*M);
104  G4double cost = 2.0*G4UniformRand() - 1.0;
105  if(cost > 1.0) {cost = 1.0;}
106  else if(cost < -1.0) {cost = -1.0;}
107  G4double sint = std::sqrt((1. - cost)*(1.0 + cost));
108  G4double phi = G4UniformRand()*CLHEP::twopi;
109  G4LorentzVector lv2(e1*sint*std::cos(phi),e1*sint*std::sin(phi),e1*cost,e1);
110  lv2.boost(bst);
111  G4HadSecondary* news =
113  news->SetTime(time);
115  delete news;
116 
117  const G4ParticleDefinition* theDef = 0;
118 
119  lv1 -= lv2;
120  if (Z == 1 && A == 2) {theDef = G4Deuteron::Deuteron();}
121  else if (Z == 1 && A == 3) {theDef = G4Triton::Triton();}
122  else if (Z == 2 && A == 3) {theDef = G4He3::He3();}
123  else if (Z == 2 && A == 4) {theDef = G4Alpha::Alpha();}
124  else { theDef = theTableOfIons->GetIon(Z,A,0); }
125 
126  if (verboseLevel > 1) {
127  G4cout << "Gamma 4-mom: " << lv2 << " "
128  << theDef->GetParticleName() << " " << lv1 << G4endl;
129  }
130  if(theDef) {
131  news = new G4HadSecondary(new G4DynamicParticle(theDef, lv1));
132  news->SetTime(time);
134  delete news;
135  }
136 
137  // Use photon evaporation
138  } else {
139 
140  G4Fragment* aFragment = new G4Fragment(A+1, Z, lv1);
141 
142  if (verboseLevel > 1) {
143  G4cout << "G4NeutronRadCapture::ApplyYourself initial G4Fragmet:" << G4endl;
144  G4cout << aFragment << G4endl;
145  }
146 
147  //
148  // Sample final state
149  //
151  if(!fv) { fv = new G4FragmentVector(); }
152  fv->push_back(aFragment);
153  size_t n = fv->size();
154 
155  if (verboseLevel > 1) {
156  G4cout << "G4NeutronRadCapture: " << n << " final particle" << G4endl;
157  }
158  for(size_t i=0; i<n; ++i) {
159 
160  G4Fragment* f = (*fv)[i];
161  G4double etot = f->GetMomentum().e();
162 
163  Z = f->GetZ_asInt();
164  A = f->GetA_asInt();
165 
166  const G4ParticleDefinition* theDef = 0;
167  if(0 == Z && 0 == A) {theDef = f->GetParticleDefinition();}
168  else if (Z == 1 && A == 2) {theDef = G4Deuteron::Deuteron();}
169  else if (Z == 1 && A == 3) {theDef = G4Triton::Triton();}
170  else if (Z == 2 && A == 3) {theDef = G4He3::He3();}
171  else if (Z == 2 && A == 4) {theDef = G4Alpha::Alpha();}
172  else {
173  G4double eexc = f->GetExcitationEnergy();
174  G4double excitation = eexc;
175  G4int level = 0;
176  theDef = theTableOfIons->GetIon(Z, A, level);
177  /*
178  G4cout << "### Find ion Z= " << theFragmentZ << " A= " << theFragmentA
179  << " Eexc(MeV)= " << excitation/MeV << " "
180  << theKindOfFragment << G4endl;
181  */
182  // production of an isomer
183  if(eexc > minExcitation) {
184  G4double elevel1 = 0.0;
185  G4double elevel2 = 0.0;
186  const G4ParticleDefinition* ion = 0;
187  for(level=1; level<9; ++level) {
188  ion = theTableOfIons->GetIon(Z, A, level);
189  //G4cout << level << " " << ion << G4endl;
190  if(ion) {
191  const G4Ions* ip = dynamic_cast<const G4Ions*>(ion);
192  if(ip) {
193  elevel2 = ip->GetExcitationEnergy();
194  //G4cout<<" Level "<<level<<" E(MeV)= "<<elevel2/MeV<<G4endl;
195  // close level
196  if(std::fabs(eexc - elevel2) < minExcitation) {
197  excitation = eexc - elevel2;
198  theDef = ion;
199  break;
200  // previous level was closer
201  } else if(elevel2 - eexc >= eexc - elevel1) {
202  excitation = eexc - elevel1;
203  break;
204  // will check next level and save current
205  } else {
206  theDef = ion;
207  excitation = eexc - elevel2;
208  elevel1 = elevel2;
209  }
210  }
211  } else {
212  break;
213  }
214  }
215  }
216  // correction of total energy for ground state isotopes
217  etot += excitation;
218  etot -= theDef->GetPDGMass();
219  if(etot < 0.0) { etot = 0.0; }
220  }
221  if (verboseLevel > 1) {
222  G4cout << i << ". " << theDef->GetParticleName()
223  << " Ekin(MeV)= " << etot/MeV
224  << " p: " << f->GetMomentum().vect()
225  << G4endl;
226  }
227  if(theDef) {
228  G4HadSecondary* news =
229  new G4HadSecondary(new G4DynamicParticle(theDef,
230  f->GetMomentum().vect().unit(),
231  etot));
232  G4double timeF = f->GetCreationTime();
233  if(timeF < 0.0) { timeF = 0.0; }
234  news->SetTime(time + timeF);
236  delete news;
237  }
238  delete f;
239  }
240  delete fv;
241  }
242  return &theParticleChange;
243 }
244 
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
static const double MeV
Definition: G4SIunits.hh:193
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4double GetExcitationEnergy() const
Definition: G4Ions.hh:113
CLHEP::Hep3Vector G4ThreeVector
G4PhotonEvaporation * photonEvaporation
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
Definition: G4IonTable.cc:463
const G4ParticleDefinition * GetParticleDefinition() const
Definition: G4Fragment.hh:403
int G4int
Definition: G4Types.hh:78
const G4String & GetParticleName() const
void SetStatusChange(G4HadFinalStateStatus aS)
void SetMinEnergy(G4double anEnergy)
G4IonTable * GetIonTable() const
#define G4UniformRand()
Definition: Randomize.hh:95
G4GLOB_DLL std::ostream G4cout
G4int GetA_asInt() const
Definition: G4Fragment.hh:243
Definition: G4Ions.hh:51
G4double GetCreationTime() const
Definition: G4Fragment.hh:413
const G4LorentzVector & GetMomentum() const
Definition: G4Fragment.hh:276
G4double GetKineticEnergy() const
G4double GetGlobalTime() const
std::vector< G4Fragment * > G4FragmentVector
Definition: G4Fragment.hh:65
static G4Triton * Triton()
Definition: G4Triton.cc:95
static const double GeV
Definition: G4SIunits.hh:196
const G4int n
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
static const G4double A[nN]
const G4LorentzVector & Get4Momentum() const
static G4Deuteron * Deuteron()
Definition: G4Deuteron.cc:94
static const G4double e1
void SetTime(G4double aT)
static const double eV
Definition: G4SIunits.hh:194
G4double GetPDGMass() const
static G4ParticleTable * GetParticleTable()
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4int GetZ_asInt() const
Definition: G4Fragment.hh:248
void SetMaxEnergy(const G4double anEnergy)
#define G4endl
Definition: G4ios.hh:61
static const double TeV
Definition: G4SIunits.hh:197
static G4Alpha * Alpha()
Definition: G4Alpha.cc:89
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
static const double keV
Definition: G4SIunits.hh:195
virtual G4FragmentVector * BreakUpFragment(G4Fragment *theNucleus)
double G4double
Definition: G4Types.hh:76
static G4He3 * He3()
Definition: G4He3.cc:94
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:260
CLHEP::HepLorentzVector G4LorentzVector