Geant4  10.01
G4UrbanMscModel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: $
27 // GEANT4 tag $Name: $
28 //
29 // -------------------------------------------------------------------
30 //
31 // GEANT4 Class file
32 //
33 //
34 // File name: G4UrbanMscModel
35 //
36 // Author: Laszlo Urban
37 //
38 // Creation date: 19.02.2013
39 //
40 // Created from G4UrbanMscModel96
41 //
42 // New parametrization for theta0
43 // Correction for very small step length
44 //
45 // Class Description:
46 //
47 // Implementation of the model of multiple scattering based on
48 // H.W.Lewis Phys Rev 78 (1950) 526 and others
49 
50 // -------------------------------------------------------------------
51 // In its present form the model can be used for simulation
52 // of the e-/e+ multiple scattering
53 //
54 
55 
56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
58 
59 #include "G4UrbanMscModel.hh"
60 #include "G4PhysicalConstants.hh"
61 #include "G4SystemOfUnits.hh"
62 #include "Randomize.hh"
63 #include "G4Electron.hh"
64 #include "G4LossTableManager.hh"
66 
67 #include "G4Poisson.hh"
68 #include "G4Pow.hh"
69 #include "globals.hh"
70 #include "G4Log.hh"
71 #include "G4Exp.hh"
72 
73 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
74 
75 using namespace std;
76 
77 static const G4double Tlim = 10.*CLHEP::MeV;
78 static const G4double sigmafactor =
79  CLHEP::twopi*CLHEP::classic_electr_radius*CLHEP::classic_electr_radius;
80 static const G4double epsfactor = 2.*CLHEP::electron_mass_c2*
81  CLHEP::electron_mass_c2*CLHEP::Bohr_radius*CLHEP::Bohr_radius
82  /(CLHEP::hbarc*CLHEP::hbarc);
83 static const G4double beta2lim = Tlim*(Tlim+2.*CLHEP::electron_mass_c2)/
84  ((Tlim+CLHEP::electron_mass_c2)*(Tlim+CLHEP::electron_mass_c2));
85 static const G4double bg2lim = Tlim*(Tlim+2.*CLHEP::electron_mass_c2)/
86  (CLHEP::electron_mass_c2*CLHEP::electron_mass_c2);
87 
88 static const G4double sig0[15] = {
89  0.2672*CLHEP::barn, 0.5922*CLHEP::barn, 2.653*CLHEP::barn, 6.235*CLHEP::barn,
90  11.69*CLHEP::barn , 13.24*CLHEP::barn , 16.12*CLHEP::barn, 23.00*CLHEP::barn,
91  35.13*CLHEP::barn , 39.95*CLHEP::barn , 50.85*CLHEP::barn, 67.19*CLHEP::barn,
92  91.15*CLHEP::barn , 104.4*CLHEP::barn , 113.1*CLHEP::barn};
93 
94 static const G4double Tdat[22] = {
95  100*CLHEP::eV, 200*CLHEP::eV, 400*CLHEP::eV, 700*CLHEP::eV,
98  100*CLHEP::keV, 200*CLHEP::keV, 400*CLHEP::keV, 700*CLHEP::keV,
100  10*CLHEP::MeV, 20*CLHEP::MeV};
101 
102 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
103 
105  : G4VMscModel(nam)
106 {
107  masslimite = 0.6*MeV;
108  lambdalimit = 1.*mm;
109  fr = 0.02;
110  taubig = 8.0;
111  tausmall = 1.e-16;
112  taulim = 1.e-6;
113  currentTau = taulim;
114  tlimitminfix = 0.01*nm;
115  tlimitminfix2 = 1.*nm;
117  smallstep = 1.e10;
118  currentRange = 0. ;
119  rangeinit = 0.;
120  tlimit = 1.e10*mm;
121  tlimitmin = 10.*tlimitminfix;
122  tgeom = 1.e50*mm;
123  geombig = 1.e50*mm;
124  geommin = 1.e-3*mm;
125  geomlimit = geombig;
126  presafety = 0.*mm;
127 
128  y = 0.;
129 
130  Zold = 0.;
131  Zeff = 1.;
132  Z2 = 1.;
133  Z23 = 1.;
134  lnZ = 0.;
135  coeffth1 = 0.;
136  coeffth2 = 0.;
137  coeffc1 = 0.;
138  coeffc2 = 0.;
139  coeffc3 = 0.;
140  coeffc4 = 0.;
141 
142  theta0max = pi/6.;
143  rellossmax = 0.50;
144  third = 1./3.;
145  particle = 0;
147  firstStep = true;
148  inside = false;
149  insideskin = false;
150  latDisplasmentbackup = false;
151 
152  rangecut = geombig;
153  drr = 0.35 ;
154  finalr = 10.*um ;
155 
157 
158  mass = proton_mass_c2;
159  charge = ChargeSquare = 1.0;
161  = zPathLength = par1 = par2 = par3 = 0;
162 
164  fParticleChange = 0;
165  couple = 0;
166 }
167 
168 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
169 
171 {}
172 
173 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
174 
176  const G4DataVector&)
177 {
179 
180  // set values of some data members
181  SetParticle(p);
182  /*
183  if(p->GetPDGMass() > MeV) {
184  G4cout << "### WARNING: G4UrbanMscModel model is used for "
185  << p->GetParticleName() << " !!! " << G4endl;
186  G4cout << "### This model should be used only for e+-"
187  << G4endl;
188  }
189  */
191 
193 
194  //G4cout << "### G4UrbanMscModel::Initialise done!" << G4endl;
195 }
196 
197 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
198 
200  const G4ParticleDefinition* part,
201  G4double KineticEnergy,
202  G4double AtomicNumber,G4double,
204 {
205  static const G4double epsmin = 1.e-4 , epsmax = 1.e10;
206 
207  static const G4double Zdat[15] = { 4., 6., 13., 20., 26., 29., 32., 38.,47.,
208  50., 56., 64., 74., 79., 82. };
209 
210  // corr. factors for e-/e+ lambda for T <= Tlim
211  static const G4double celectron[15][22] =
212  {{1.125,1.072,1.051,1.047,1.047,1.050,1.052,1.054,
213  1.054,1.057,1.062,1.069,1.075,1.090,1.105,1.111,
214  1.112,1.108,1.100,1.093,1.089,1.087 },
215  {1.408,1.246,1.143,1.096,1.077,1.059,1.053,1.051,
216  1.052,1.053,1.058,1.065,1.072,1.087,1.101,1.108,
217  1.109,1.105,1.097,1.090,1.086,1.082 },
218  {2.833,2.268,1.861,1.612,1.486,1.309,1.204,1.156,
219  1.136,1.114,1.106,1.106,1.109,1.119,1.129,1.132,
220  1.131,1.124,1.113,1.104,1.099,1.098 },
221  {3.879,3.016,2.380,2.007,1.818,1.535,1.340,1.236,
222  1.190,1.133,1.107,1.099,1.098,1.103,1.110,1.113,
223  1.112,1.105,1.096,1.089,1.085,1.098 },
224  {6.937,4.330,2.886,2.256,1.987,1.628,1.395,1.265,
225  1.203,1.122,1.080,1.065,1.061,1.063,1.070,1.073,
226  1.073,1.070,1.064,1.059,1.056,1.056 },
227  {9.616,5.708,3.424,2.551,2.204,1.762,1.485,1.330,
228  1.256,1.155,1.099,1.077,1.070,1.068,1.072,1.074,
229  1.074,1.070,1.063,1.059,1.056,1.052 },
230  {11.72,6.364,3.811,2.806,2.401,1.884,1.564,1.386,
231  1.300,1.180,1.112,1.082,1.073,1.066,1.068,1.069,
232  1.068,1.064,1.059,1.054,1.051,1.050 },
233  {18.08,8.601,4.569,3.183,2.662,2.025,1.646,1.439,
234  1.339,1.195,1.108,1.068,1.053,1.040,1.039,1.039,
235  1.039,1.037,1.034,1.031,1.030,1.036 },
236  {18.22,10.48,5.333,3.713,3.115,2.367,1.898,1.631,
237  1.498,1.301,1.171,1.105,1.077,1.048,1.036,1.033,
238  1.031,1.028,1.024,1.022,1.021,1.024 },
239  {14.14,10.65,5.710,3.929,3.266,2.453,1.951,1.669,
240  1.528,1.319,1.178,1.106,1.075,1.040,1.027,1.022,
241  1.020,1.017,1.015,1.013,1.013,1.020 },
242  {14.11,11.73,6.312,4.240,3.478,2.566,2.022,1.720,
243  1.569,1.342,1.186,1.102,1.065,1.022,1.003,0.997,
244  0.995,0.993,0.993,0.993,0.993,1.011 },
245  {22.76,20.01,8.835,5.287,4.144,2.901,2.219,1.855,
246  1.677,1.410,1.224,1.121,1.073,1.014,0.986,0.976,
247  0.974,0.972,0.973,0.974,0.975,0.987 },
248  {50.77,40.85,14.13,7.184,5.284,3.435,2.520,2.059,
249  1.837,1.512,1.283,1.153,1.091,1.010,0.969,0.954,
250  0.950,0.947,0.949,0.952,0.954,0.963 },
251  {65.87,59.06,15.87,7.570,5.567,3.650,2.682,2.182,
252  1.939,1.579,1.325,1.178,1.108,1.014,0.965,0.947,
253  0.941,0.938,0.940,0.944,0.946,0.954 },
254  {55.60,47.34,15.92,7.810,5.755,3.767,2.760,2.239,
255  1.985,1.609,1.343,1.188,1.113,1.013,0.960,0.939,
256  0.933,0.930,0.933,0.936,0.939,0.949 }};
257 
258  static const G4double cpositron[15][22] = {
259  {2.589,2.044,1.658,1.446,1.347,1.217,1.144,1.110,
260  1.097,1.083,1.080,1.086,1.092,1.108,1.123,1.131,
261  1.131,1.126,1.117,1.108,1.103,1.100 },
262  {3.904,2.794,2.079,1.710,1.543,1.325,1.202,1.145,
263  1.122,1.096,1.089,1.092,1.098,1.114,1.130,1.137,
264  1.138,1.132,1.122,1.113,1.108,1.102 },
265  {7.970,6.080,4.442,3.398,2.872,2.127,1.672,1.451,
266  1.357,1.246,1.194,1.179,1.178,1.188,1.201,1.205,
267  1.203,1.190,1.173,1.159,1.151,1.145 },
268  {9.714,7.607,5.747,4.493,3.815,2.777,2.079,1.715,
269  1.553,1.353,1.253,1.219,1.211,1.214,1.225,1.228,
270  1.225,1.210,1.191,1.175,1.166,1.174 },
271  {17.97,12.95,8.628,6.065,4.849,3.222,2.275,1.820,
272  1.624,1.382,1.259,1.214,1.202,1.202,1.214,1.219,
273  1.217,1.203,1.184,1.169,1.160,1.151 },
274  {24.83,17.06,10.84,7.355,5.767,3.707,2.546,1.996,
275  1.759,1.465,1.311,1.252,1.234,1.228,1.238,1.241,
276  1.237,1.222,1.201,1.184,1.174,1.159 },
277  {23.26,17.15,11.52,8.049,6.375,4.114,2.792,2.155,
278  1.880,1.535,1.353,1.281,1.258,1.247,1.254,1.256,
279  1.252,1.234,1.212,1.194,1.183,1.170 },
280  {22.33,18.01,12.86,9.212,7.336,4.702,3.117,2.348,
281  2.015,1.602,1.385,1.297,1.268,1.251,1.256,1.258,
282  1.254,1.237,1.214,1.195,1.185,1.179 },
283  {33.91,24.13,15.71,10.80,8.507,5.467,3.692,2.808,
284  2.407,1.873,1.564,1.425,1.374,1.330,1.324,1.320,
285  1.312,1.288,1.258,1.235,1.221,1.205 },
286  {32.14,24.11,16.30,11.40,9.015,5.782,3.868,2.917,
287  2.490,1.925,1.596,1.447,1.391,1.342,1.332,1.327,
288  1.320,1.294,1.264,1.240,1.226,1.214 },
289  {29.51,24.07,17.19,12.28,9.766,6.238,4.112,3.066,
290  2.602,1.995,1.641,1.477,1.414,1.356,1.342,1.336,
291  1.328,1.302,1.270,1.245,1.231,1.233 },
292  {38.19,30.85,21.76,15.35,12.07,7.521,4.812,3.498,
293  2.926,2.188,1.763,1.563,1.484,1.405,1.382,1.371,
294  1.361,1.330,1.294,1.267,1.251,1.239 },
295  {49.71,39.80,27.96,19.63,15.36,9.407,5.863,4.155,
296  3.417,2.478,1.944,1.692,1.589,1.480,1.441,1.423,
297  1.409,1.372,1.330,1.298,1.280,1.258 },
298  {59.25,45.08,30.36,20.83,16.15,9.834,6.166,4.407,
299  3.641,2.648,2.064,1.779,1.661,1.531,1.482,1.459,
300  1.442,1.400,1.354,1.319,1.299,1.272 },
301  {56.38,44.29,30.50,21.18,16.51,10.11,6.354,4.542,
302  3.752,2.724,2.116,1.817,1.692,1.554,1.499,1.474,
303  1.456,1.412,1.364,1.328,1.307,1.282 }};
304 
305  //data/corrections for T > Tlim
306 
307  static const G4double hecorr[15] = {
308  120.70, 117.50, 105.00, 92.92, 79.23, 74.510, 68.29,
309  57.39, 41.97, 36.14, 24.53, 10.21, -7.855, -16.84,
310  -22.30};
311 
312  G4double sigma;
313  SetParticle(part);
314 
315  Z23 = G4Pow::GetInstance()->Z23(G4lrint(AtomicNumber));
316 
317  // correction if particle .ne. e-/e+
318  // compute equivalent kinetic energy
319  // lambda depends on p*beta ....
320 
321  G4double eKineticEnergy = KineticEnergy;
322 
323  if(mass > electron_mass_c2)
324  {
325  G4double TAU = KineticEnergy/mass ;
326  G4double c = mass*TAU*(TAU+2.)/(electron_mass_c2*(TAU+1.)) ;
327  G4double w = c-2. ;
328  G4double tau = 0.5*(w+sqrt(w*w+4.*c)) ;
329  eKineticEnergy = electron_mass_c2*tau ;
330  }
331 
332  G4double eTotalEnergy = eKineticEnergy + electron_mass_c2 ;
333  G4double beta2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
334  /(eTotalEnergy*eTotalEnergy);
335  G4double bg2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
336  /(electron_mass_c2*electron_mass_c2);
337 
338  G4double eps = epsfactor*bg2/Z23;
339 
340  if (eps<epsmin) sigma = 2.*eps*eps;
341  else if(eps<epsmax) sigma = G4Log(1.+2.*eps)-2.*eps/(1.+2.*eps);
342  else sigma = G4Log(2.*eps)-1.+1./eps;
343 
344  sigma *= ChargeSquare*AtomicNumber*AtomicNumber/(beta2*bg2);
345 
346  // interpolate in AtomicNumber and beta2
347  G4double c1,c2,cc1,cc2,corr;
348 
349  // get bin number in Z
350  G4int iZ = 14;
351  while ((iZ>=0)&&(Zdat[iZ]>=AtomicNumber)) iZ -= 1;
352  if (iZ==14) iZ = 13;
353  if (iZ==-1) iZ = 0 ;
354 
355  G4double ZZ1 = Zdat[iZ];
356  G4double ZZ2 = Zdat[iZ+1];
357  G4double ratZ = (AtomicNumber-ZZ1)*(AtomicNumber+ZZ1)/
358  ((ZZ2-ZZ1)*(ZZ2+ZZ1));
359 
360  if(eKineticEnergy <= Tlim)
361  {
362  // get bin number in T (beta2)
363  G4int iT = 21;
364  while ((iT>=0)&&(Tdat[iT]>=eKineticEnergy)) iT -= 1;
365  if(iT==21) iT = 20;
366  if(iT==-1) iT = 0 ;
367 
368  // calculate betasquare values
369  G4double T = Tdat[iT], E = T + electron_mass_c2;
370  G4double b2small = T*(E+electron_mass_c2)/(E*E);
371 
372  T = Tdat[iT+1]; E = T + electron_mass_c2;
373  G4double b2big = T*(E+electron_mass_c2)/(E*E);
374  G4double ratb2 = (beta2-b2small)/(b2big-b2small);
375 
376  if (charge < 0.)
377  {
378  c1 = celectron[iZ][iT];
379  c2 = celectron[iZ+1][iT];
380  cc1 = c1+ratZ*(c2-c1);
381 
382  c1 = celectron[iZ][iT+1];
383  c2 = celectron[iZ+1][iT+1];
384  cc2 = c1+ratZ*(c2-c1);
385 
386  corr = cc1+ratb2*(cc2-cc1);
387 
388  sigma *= sigmafactor/corr;
389  }
390  else
391  {
392  c1 = cpositron[iZ][iT];
393  c2 = cpositron[iZ+1][iT];
394  cc1 = c1+ratZ*(c2-c1);
395 
396  c1 = cpositron[iZ][iT+1];
397  c2 = cpositron[iZ+1][iT+1];
398  cc2 = c1+ratZ*(c2-c1);
399 
400  corr = cc1+ratb2*(cc2-cc1);
401 
402  sigma *= sigmafactor/corr;
403  }
404  }
405  else
406  {
407  c1 = bg2lim*sig0[iZ]*(1.+hecorr[iZ]*(beta2-beta2lim))/bg2;
408  c2 = bg2lim*sig0[iZ+1]*(1.+hecorr[iZ+1]*(beta2-beta2lim))/bg2;
409  if((AtomicNumber >= ZZ1) && (AtomicNumber <= ZZ2))
410  sigma = c1+ratZ*(c2-c1) ;
411  else if(AtomicNumber < ZZ1)
412  sigma = AtomicNumber*AtomicNumber*c1/(ZZ1*ZZ1);
413  else if(AtomicNumber > ZZ2)
414  sigma = AtomicNumber*AtomicNumber*c2/(ZZ2*ZZ2);
415  }
416  return sigma;
417 
418 }
419 
420 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
421 
423 {
425  firstStep = true;
426  inside = false;
427  insideskin = false;
428  tlimit = geombig;
430  tlimitmin = 10.*stepmin ;
431 }
432 
433 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
434 
436  const G4Track& track,
437  G4double& currentMinimalStep)
438 {
439  tPathLength = currentMinimalStep;
440  const G4DynamicParticle* dp = track.GetDynamicParticle();
441 
442  G4StepPoint* sp = track.GetStep()->GetPreStepPoint();
443  G4StepStatus stepStatus = sp->GetStepStatus();
444  couple = track.GetMaterialCutsCouple();
451 
452  // set flag to default values
454  /*
455  G4cout << "G4Urban::StepLimit tPathLength= "
456  <<tPathLength<<" inside= " << inside
457  << " range= " <<currentRange<< " lambda= "<<lambda0
458  <<G4endl;
459  */
460  // stop here if small range particle
461  if(inside) {
462  latDisplasment = false;
463  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
464  }
465  // stop here if small step
466  if(tPathLength < tlimitminfix) {
467  latDisplasment = false;
468  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
469  }
470 
471  presafety = sp->GetSafety();
472  /*
473  G4cout << "G4Urban::StepLimit tPathLength= "
474  <<tPathLength<<" safety= " << presafety
475  << " range= " <<currentRange<< " lambda= "<<lambda0
476  << " Alg: " << steppingAlgorithm <<G4endl;
477  */
478  // far from geometry boundary
479  if(currentRange < presafety)
480  {
481  inside = true;
482  latDisplasment = false;
483  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
484  }
485 
486  // standard version
487  //
489  {
490  //compute geomlimit and presafety
492 
493  // is it far from boundary ?
494  if(currentRange < presafety)
495  {
496  inside = true;
497  latDisplasment = false;
498  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
499  }
500 
501  smallstep += 1.;
502  insideskin = false;
503 
504  if(firstStep || (stepStatus == fGeomBoundary))
505  {
507  if(firstStep) { smallstep = 1.e10; }
508  else { smallstep = 1.; }
509 
510  //define stepmin here (it depends on lambda!)
511  //rough estimation of lambda_elastic/lambda_transport
513  rat = 1.e-3/(rat*(10.+rat)) ;
514  //stepmin ~ lambda_elastic
515  stepmin = rat*lambda0;
517  //define tlimitmin
518  tlimitmin = 10.*stepmin;
520  //G4cout << "rangeinit= " << rangeinit << " stepmin= " << stepmin
521  // << " tlimitmin= " << tlimitmin << " geomlimit= "
522  // << geomlimit <<G4endl;
523  // constraint from the geometry
524  if((geomlimit < geombig) && (geomlimit > geommin))
525  {
526  // geomlimit is a geometrical step length
527  // transform it to true path length (estimation)
528  if((1.-geomlimit/lambda0) > 0.)
529  geomlimit = -lambda0*G4Log(1.-geomlimit/lambda0)+tlimitmin ;
530 
531  if(stepStatus == fGeomBoundary)
533  else
534  tgeom = 2.*geomlimit/facgeom;
535  }
536  else
537  tgeom = geombig;
538  }
539 
540  //step limit
542 
543  //lower limit for tlimit
545 
546  tlimit = min(tlimit,tgeom);
547 
548  //G4cout << "tgeom= " << tgeom << " geomlimit= " << geomlimit
549  // << " tlimit= " << tlimit << " presafety= " << presafety << G4endl;
550 
551  // shortcut
552  if((tPathLength < tlimit) && (tPathLength < presafety) &&
553  (smallstep > skin) && (tPathLength < geomlimit-0.999*skindepth))
554  {
555  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
556  }
557 
558  // step reduction near to boundary
559  if(smallstep <= skin)
560  {
561  tlimit = stepmin;
562  insideskin = true;
563  }
564  else if(geomlimit < geombig)
565  {
566  if(geomlimit > skindepth)
567  {
568  tlimit = min(tlimit, geomlimit-0.999*skindepth);
569  }
570  else
571  {
572  insideskin = true;
573  tlimit = min(tlimit, stepmin);
574  }
575  }
576 
577  tlimit = max(tlimit, stepmin);
578 
579  // randomize 1st step or 1st 'normal' step in volume
580  if(firstStep || ((smallstep == skin+1) && !insideskin))
581  {
582  G4double temptlimit = tlimit;
583  if(temptlimit > tlimitmin)
584  {
585  do {
586  temptlimit = G4RandGauss::shoot(rndmEngineMod,tlimit,0.3*tlimit);
587  } while ((temptlimit < tlimitmin) ||
588  (temptlimit > 2.*tlimit-tlimitmin));
589  }
590  else { temptlimit = tlimitmin; }
591 
592  tPathLength = min(tPathLength, temptlimit);
593  }
594  else
595  {
597  }
598 
599  }
600  // for 'normal' simulation with or without magnetic field
601  // there no small step/single scattering at boundaries
602  else if(steppingAlgorithm == fUseSafety)
603  {
604  if(currentRange < presafety)
605  {
606  inside = true;
607  latDisplasment = false;
608  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
609  }
610  else if(stepStatus != fGeomBoundary) {
612  }
613  /*
614  G4cout << "presafety= " << presafety
615  << " firstStep= " << firstStep
616  << " stepStatus= " << stepStatus
617  << G4endl;
618  */
619  // is far from boundary
620  if(currentRange < presafety)
621  {
622  inside = true;
623  latDisplasment = false;
624  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
625  }
626 
627  if(firstStep || stepStatus == fGeomBoundary)
628  {
630  fr = facrange;
631  // 9.1 like stepping for e+/e- only (not for muons,hadrons)
632  if(mass < masslimite)
633  {
635  if(lambda0 > lambdalimit) {
636  fr *= (0.75+0.25*lambda0/lambdalimit);
637  }
638  }
639 
640  //lower limit for tlimit
642  rat = 1.e-3/(rat*(10 + rat)) ;
643  stepmin = lambda0*rat;
645  }
646 
647  //step limit
649 
650  //lower limit for tlimit
651  tlimit = max(tlimit, tlimitmin);
652 
653  if(firstStep || stepStatus == fGeomBoundary)
654  {
655  G4double temptlimit = tlimit;
656  if(temptlimit > tlimitmin)
657  {
658  do {
659  temptlimit = G4RandGauss::shoot(rndmEngineMod,tlimit,0.3*tlimit);
660  } while ((temptlimit < tlimitmin) ||
661  (temptlimit > 2.*tlimit-tlimitmin));
662  }
663  else { temptlimit = tlimitmin; }
664 
665  tPathLength = min(tPathLength, temptlimit);
666  }
667  else { tPathLength = min(tPathLength, tlimit); }
668  }
669  // new stepping mode UseSafetyPlus
671  {
672  if(currentRange < presafety)
673  {
674  inside = true;
675  latDisplasment = false;
676  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
677  }
678  else if(stepStatus != fGeomBoundary) {
680  }
681  /*
682  G4cout << "presafety= " << presafety
683  << " firstStep= " << firstStep
684  << " stepStatus= " << stepStatus
685  << G4endl;
686  */
687  // is far from boundary
688  if(currentRange < presafety)
689  {
690  inside = true;
691  latDisplasment = false;
692  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
693  }
694 
695  if(firstStep || stepStatus == fGeomBoundary)
696  {
698  fr = facrange;
699  rangecut = geombig;
700  if(mass < masslimite)
701  {
702  G4int index = 1;
703  if(charge > 0.) index = 2;
705  if(lambda0 > lambdalimit) {
706  fr *= (0.84+0.16*lambda0/lambdalimit);
707  }
708  }
709 
710  //lower limit for tlimit
712  rat = 1.e-3/(rat*(10 + rat)) ;
713  stepmin = lambda0*rat;
715  }
716  //step limit
718 
719  //lower limit for tlimit
721 
722  // condition for tPathLength from drr and finalr
723  if(currentRange > finalr) {
724  G4double tmax = drr*currentRange+
725  finalr*(1.-drr)*(2.-finalr/currentRange);
726  tPathLength = min(tPathLength,tmax);
727  }
728 
729  // condition safety
730  if(currentRange > rangecut) {
731  if(firstStep) {
732  tPathLength = min(tPathLength,facsafety*presafety);
733  }
734  else if(stepStatus != fGeomBoundary) {
735  if(presafety > stepmin) {
736  tPathLength = min(tPathLength,presafety);
737  }
738  }
739  }
740 
741  if(firstStep || stepStatus == fGeomBoundary)
742  {
743  G4double temptlimit = tlimit;
744  if(temptlimit > tlimitmin)
745  {
746  do {
747  temptlimit = G4RandGauss::shoot(rndmEngineMod,tlimit,0.3*tlimit);
748  } while ((temptlimit < tlimitmin) ||
749  (temptlimit > 2.*tlimit-tlimitmin));
750  }
751  else { temptlimit = tlimitmin; }
752 
753  tPathLength = min(tPathLength, temptlimit);
754  }
755  else { tPathLength = min(tPathLength, tlimit); }
756  }
757 
758  // version similar to 7.1 (needed for some experiments)
759  else
760  {
761  if (stepStatus == fGeomBoundary)
762  {
764  else { tlimit = facrange*lambda0; }
765 
767  }
768 
769  if(firstStep || stepStatus == fGeomBoundary)
770  {
771  G4double temptlimit = tlimit;
772  if(temptlimit > tlimitmin)
773  {
774  do {
775  temptlimit = G4RandGauss::shoot(rndmEngineMod,tlimit,0.3*tlimit);
776  } while ((temptlimit < tlimitmin) ||
777  (temptlimit > 2.*tlimit-tlimitmin));
778  }
779  else { temptlimit = tlimitmin; }
780 
781  tPathLength = min(tPathLength, temptlimit);
782  }
783  else { tPathLength = min(tPathLength, tlimit); }
784  }
785  //G4cout << "tPathLength= " << tPathLength
786  // << " currentMinimalStep= " << currentMinimalStep << G4endl;
787  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
788 }
789 
790 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
791 
793 {
794  firstStep = false;
795  lambdaeff = lambda0;
796  par1 = -1. ;
797  par2 = par3 = 0. ;
798 
799  // this correction needed to run MSC with eIoni and eBrem inactivated
800  // and makes no harm for a normal run
802 
803  // do the true -> geom transformation
805 
806  // z = t for very small tPathLength
808 
809  // VI: it is already checked
810  // if(tPathLength > currentRange)
811  // tPathLength = currentRange ;
812  /*
813  G4cout << "ComputeGeomPathLength: tpl= " << tPathLength
814  << " R= " << currentRange << " L0= " << lambda0
815  << " E= " << currentKinEnergy << " "
816  << particle->GetParticleName() << G4endl;
817  */
819 
820  if ((tau <= tausmall) || insideskin) {
822 
823  } else if (tPathLength < currentRange*dtrl) {
824  if(tau < taulim) zPathLength = tPathLength*(1.-0.5*tau) ;
825  else zPathLength = lambda0*(1.-G4Exp(-tau));
826 
827  } else if(currentKinEnergy < mass || tPathLength == currentRange) {
828  par1 = 1./currentRange ;
829  par2 = 1./(par1*lambda0) ;
830  par3 = 1.+par2 ;
831  if(tPathLength < currentRange) {
832  zPathLength =
834  } else {
835  zPathLength = 1./(par1*par3);
836  }
837 
838  } else {
840  G4double T1 = GetEnergy(particle,rfin,couple);
842 
843  par1 = (lambda0-lambda1)/(lambda0*tPathLength);
844  //G4cout << "par1= " << par1 << " L1= " << lambda1 << G4endl;
845  par2 = 1./(par1*lambda0);
846  par3 = 1.+par2 ;
847  zPathLength = (1.-G4Exp(par3*G4Log(lambda1/lambda0)))/(par1*par3);
848  }
849 
851  //G4cout<< "zPathLength= "<< zPathLength<< " L0= " << lambda0 << G4endl;
852  return zPathLength;
853 }
854 
855 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
856 
858 {
859  // step defined other than transportation
860  if(geomStepLength == zPathLength) {
861  //G4cout << "Urban::ComputeTrueLength: tPathLength= " << tPathLength
862  // << " step= " << geomStepLength << " *** " << G4endl;
863  return tPathLength;
864  }
865 
866  zPathLength = geomStepLength;
867 
868  // t = z for very small step
869  if(geomStepLength < tlimitminfix2) {
870  tPathLength = geomStepLength;
871 
872  // recalculation
873  } else {
874 
875  G4double tlength = geomStepLength;
876  if((geomStepLength > lambda0*tausmall) && !insideskin) {
877 
878  if(par1 < 0.) {
879  tlength = -lambda0*G4Log(1.-geomStepLength/lambda0) ;
880  } else {
881  if(par1*par3*geomStepLength < 1.) {
882  tlength = (1.-G4Exp(G4Log(1.-par1*par3*geomStepLength)/par3))/par1 ;
883  } else {
884  tlength = currentRange;
885  }
886  }
887 
888  if(tlength < geomStepLength) { tlength = geomStepLength; }
889  else if(tlength > tPathLength) { tlength = tPathLength; }
890  }
891  tPathLength = tlength;
892  }
893  //G4cout << "Urban::ComputeTrueLength: tPathLength= " << tPathLength
894  // << " step= " << geomStepLength << " &&& " << G4endl;
895 
896  return tPathLength;
897 }
898 
899 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
900 
903  G4double /*safety*/)
904 {
905  fDisplacement.set(0.0,0.0,0.0);
906  G4double kineticEnergy = currentKinEnergy;
907  if (tPathLength > currentRange*dtrl) {
909  } else {
911  }
912 
913  if((kineticEnergy <= eV) || (tPathLength <= tlimitminfix) ||
914  (tPathLength < tausmall*lambda0)) { return fDisplacement; }
915 
916  G4double cth = SampleCosineTheta(tPathLength,kineticEnergy);
917 
918  // protection against 'bad' cth values
919  if(std::fabs(cth) >= 1.0) { return fDisplacement; }
920 
921  /*
922  if(cth < 1.0 - 1000*tPathLength/lambda0 && cth < 0.5 &&
923  kineticEnergy > 20*MeV) {
924  G4cout << "### G4UrbanMscModel::SampleScattering for "
925  << particle->GetParticleName()
926  << " E(MeV)= " << kineticEnergy/MeV
927  << " Step(mm)= " << tPathLength/mm
928  << " in " << CurrentCouple()->GetMaterial()->GetName()
929  << " CosTheta= " << cth << G4endl;
930  }
931  */
932  G4double sth = sqrt((1.0 - cth)*(1.0 + cth));
933  G4double phi = twopi*rndmEngineMod->flat();
934  G4double dirx = sth*cos(phi);
935  G4double diry = sth*sin(phi);
936 
937  G4ThreeVector newDirection(dirx,diry,cth);
938  newDirection.rotateUz(oldDirection);
940  /*
941  G4cout << "G4UrbanMscModel::SampleSecondaries: e(MeV)= " << kineticEnergy
942  << " sinTheta= " << sth << " safety(mm)= " << safety
943  << " trueStep(mm)= " << tPathLength
944  << " geomStep(mm)= " << zPathLength
945  << G4endl;
946  */
947 
948  //if (latDisplasment && safety > tlimitminfix2 && currentTau >= tausmall &&
949  // !insideskin) {
950  if (latDisplasment && currentTau >= tausmall) {
951  //sample displacement r
953  G4double r = rmax*G4Exp(G4Log(rndmEngineMod->flat())*third);
954 
955  /*
956  G4cout << "G4UrbanMscModel::SampleSecondaries: e(MeV)= " << kineticEnergy
957  << " sinTheta= " << sth << " r(mm)= " << r
958  << " trueStep(mm)= " << tPathLength
959  << " geomStep(mm)= " << zPathLength
960  << G4endl;
961  */
962  if(r > 0.)
963  {
964  G4double latcorr = LatCorrelation();
965  latcorr = min(latcorr, r);
966 
967  // sample direction of lateral displacement
968  // compute it from the lateral correlation
969  G4double Phi = 0.;
970  if(std::abs(r*sth) < latcorr)
971  Phi = twopi*rndmEngineMod->flat();
972  else
973  {
974  //G4cout << "latcorr= " << latcorr << " r*sth= " << r*sth
975  // << " ratio= " << latcorr/(r*sth) << G4endl;
976  G4double psi = std::acos(latcorr/(r*sth));
977  if(rndmEngineMod->flat() < 0.5)
978  Phi = phi+psi;
979  else
980  Phi = phi-psi;
981  }
982 
983  dirx = std::cos(Phi);
984  diry = std::sin(Phi);
985 
986  fDisplacement.set(r*dirx,r*diry,0.0);
987  fDisplacement.rotateUz(oldDirection);
988  }
989  }
990  return fDisplacement;
991 }
992 
993 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
994 
996  G4double KineticEnergy)
997 {
998  G4double cth = 1. ;
999  G4double tau = trueStepLength/lambda0;
1000  currentTau = tau;
1001  lambdaeff = lambda0;
1002 
1005 
1006  if(Zold != Zeff)
1007  UpdateCache();
1008 
1009  G4double lambda1 = GetTransportMeanFreePath(particle,KineticEnergy);
1010  if(std::fabs(lambda1 - lambda0) > lambda0*0.01 && lambda1 > 0.)
1011  {
1012  // mean tau value
1013  tau = trueStepLength*G4Log(lambda0/lambda1)/(lambda0-lambda1);
1014  }
1015 
1016  currentTau = tau ;
1017  lambdaeff = trueStepLength/currentTau;
1019 
1020  if (tau >= taubig) { cth = -1.+2.*rndmEngineMod->flat(); }
1021  else if (tau >= tausmall) {
1022  static const G4double numlim = 0.01;
1023  G4double xmeanth, x2meanth;
1024  if(tau < numlim) {
1025  xmeanth = 1.0 - tau*(1.0 - 0.5*tau);
1026  x2meanth= 1.0 - tau*(5.0 - 6.25*tau)/3.;
1027  } else {
1028  xmeanth = G4Exp(-tau);
1029  x2meanth = (1.+2.*G4Exp(-2.5*tau))/3.;
1030  }
1031 
1032  // too large step of low-energy particle
1033  G4double relloss = 1. - KineticEnergy/currentKinEnergy;
1034  if(relloss > rellossmax) {
1035  return SimpleScattering(xmeanth,x2meanth);
1036  }
1037  // is step extreme small ?
1038  G4bool extremesmallstep = false ;
1039  G4double tsmall = tlimitmin;
1040  G4double theta0 = 0.;
1041  if(trueStepLength > tsmall) {
1042  theta0 = ComputeTheta0(trueStepLength,KineticEnergy);
1043  } else {
1044  G4double rate = trueStepLength/tsmall ;
1045  if(rndmEngineMod->flat() < rate) {
1046  theta0 = ComputeTheta0(tsmall,KineticEnergy);
1047  extremesmallstep = true ;
1048  }
1049  }
1050  //G4cout << "Theta0= " << theta0 << " theta0max= " << theta0max
1051  // << " sqrt(tausmall)= " << sqrt(tausmall) << G4endl;
1052 
1053  // protection for very small angles
1054  G4double theta2 = theta0*theta0;
1055 
1056  if(theta2 < tausmall) { return cth; }
1057 
1058  if(theta0 > theta0max) {
1059  return SimpleScattering(xmeanth,x2meanth);
1060  }
1061 
1062  G4double x = theta2*(1.0 - theta2/12.);
1063  if(theta2 > numlim) {
1064  G4double sth = 2*sin(0.5*theta0);
1065  x = sth*sth;
1066  }
1067 
1068  // parameter for tail
1069  G4double ltau= G4Log(tau);
1070  G4double u = G4Exp(ltau/6.);
1071  if(extremesmallstep) u = G4Exp(G4Log(tsmall/lambda0)/6.);
1073  G4double xsi = coeffc1+u*(coeffc2+coeffc3*u)+coeffc4*xx;
1074 
1075  // tail should not be too big
1076  if(xsi < 1.9) {
1077  /*
1078  if(KineticEnergy > 20*MeV && xsi < 1.6) {
1079  G4cout << "G4UrbanMscModel::SampleCosineTheta: E(GeV)= "
1080  << KineticEnergy/GeV
1081  << " !!** c= " << xsi
1082  << " **!! length(mm)= " << trueStepLength << " Zeff= " << Zeff
1083  << " " << couple->GetMaterial()->GetName()
1084  << " tau= " << tau << G4endl;
1085  }
1086  */
1087  xsi = 1.9;
1088  }
1089 
1090  G4double c = xsi;
1091 
1092  if(fabs(c-3.) < 0.001) { c = 3.001; }
1093  else if(fabs(c-2.) < 0.001) { c = 2.001; }
1094 
1095  G4double c1 = c-1.;
1096 
1097  G4double ea = G4Exp(-xsi);
1098  G4double eaa = 1.-ea ;
1099  G4double xmean1 = 1.-(1.-(1.+xsi)*ea)*x/eaa;
1100  G4double x0 = 1. - xsi*x;
1101 
1102  // G4cout << " xmean1= " << xmean1 << " xmeanth= " << xmeanth << G4endl;
1103 
1104  if(xmean1 <= 0.999*xmeanth) {
1105  return SimpleScattering(xmeanth,x2meanth);
1106  }
1107  //from continuity of derivatives
1108  G4double b = 1.+(c-xsi)*x;
1109 
1110  G4double b1 = b+1.;
1111  G4double bx = c*x;
1112 
1113  G4double eb1 = G4Exp(G4Log(b1)*c1);
1114  G4double ebx = G4Exp(G4Log(bx)*c1);
1115  G4double d = ebx/eb1;
1116 
1117  G4double xmean2 = (x0 + d - (bx - b1*d)/(c-2.))/(1. - d);
1118 
1119  G4double f1x0 = ea/eaa;
1120  G4double f2x0 = c1/(c*(1. - d));
1121  G4double prob = f2x0/(f1x0+f2x0);
1122 
1123  G4double qprob = xmeanth/(prob*xmean1+(1.-prob)*xmean2);
1124 
1125  // sampling of costheta
1126  //G4cout << "c= " << c << " qprob= " << qprob << " eb1= " << eb1
1127  // << " c1= " << c1 << " b1= " << b1 << " bx= " << bx << " eb1= " << eb1
1128  // << G4endl;
1129  if(rndmEngineMod->flat() < qprob)
1130  {
1131  G4double var = 0;
1132  if(rndmEngineMod->flat() < prob) {
1133  cth = 1.+G4Log(ea+rndmEngineMod->flat()*eaa)*x;
1134  } else {
1135  var = (1.0 - d)*rndmEngineMod->flat();
1136  if(var < numlim*d) {
1137  var /= (d*c1);
1138  cth = -1.0 + var*(1.0 - 0.5*var*c)*(2. + (c - xsi)*x);
1139  } else {
1140  cth = 1. + x*(c - xsi - c*G4Exp(-G4Log(var + d)/c1));
1141  }
1142  }
1143  /*
1144  if(KineticEnergy > 5*GeV && cth < 0.9) {
1145  G4cout << "G4UrbanMscModel::SampleCosineTheta: E(GeV)= "
1146  << KineticEnergy/GeV
1147  << " 1-cosT= " << 1 - cth
1148  << " length(mm)= " << trueStepLength << " Zeff= " << Zeff
1149  << " tau= " << tau
1150  << " prob= " << prob << " var= " << var << G4endl;
1151  G4cout << " c= " << c << " qprob= " << qprob << " eb1= " << eb1
1152  << " ebx= " << ebx
1153  << " c1= " << c1 << " b= " << b << " b1= " << b1
1154  << " bx= " << bx << " d= " << d
1155  << " ea= " << ea << " eaa= " << eaa << G4endl;
1156  }
1157  */
1158  }
1159  else {
1160  cth = -1.+2.*rndmEngineMod->flat();
1161  /*
1162  if(KineticEnergy > 5*GeV) {
1163  G4cout << "G4UrbanMscModel::SampleCosineTheta: E(GeV)= "
1164  << KineticEnergy/GeV
1165  << " length(mm)= " << trueStepLength << " Zeff= " << Zeff
1166  << " qprob= " << qprob << G4endl;
1167  }
1168  */
1169  }
1170  }
1171  return cth ;
1172 }
1173 
1174 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1175 
1176 
1177 
G4ParticleChangeForMSC * fParticleChange
static G4Pow * GetInstance()
Definition: G4Pow.cc:55
G4double facgeom
Definition: G4VMscModel.hh:178
ThreeVector shoot(const G4int Ap, const G4int Af)
static c2_factory< G4double > c2
static const double MeV
Definition: G4SIunits.hh:193
static G4LossTableManager * Instance()
G4UrbanMscModel(const G4String &nam="UrbanMsc")
G4double GetTotNbOfElectPerVolume() const
Definition: G4Material.hh:210
G4double GetKineticEnergy() const
CLHEP::Hep3Vector G4ThreeVector
G4double dtrl
Definition: G4VMscModel.hh:181
const G4DynamicParticle * GetDynamicParticle() const
virtual ~G4UrbanMscModel()
G4double facrange
Definition: G4VMscModel.hh:177
static const G4double Tdat[22]
G4ThreeVector & SampleScattering(const G4ThreeVector &, G4double safety)
G4double GetProductionCut(G4int index) const
G4StepStatus GetStepStatus() const
const G4double pi
G4double ConvertTrueToGeom(G4double &tLength, G4double &gLength)
Definition: G4VMscModel.hh:247
G4double skin
Definition: G4VMscModel.hh:180
const G4MaterialCutsCouple * GetMaterialCutsCouple() const
G4bool latDisplasment
Definition: G4VMscModel.hh:190
static const G4double eps
G4ParticleDefinition * GetDefinition() const
const G4ParticleDefinition * particle
G4double currentRadLength
const G4Step * GetStep() const
G4double ComputeSafety(const G4ThreeVector &position, G4double limit=DBL_MAX)
Definition: G4VMscModel.hh:239
int G4int
Definition: G4Types.hh:78
static const G4double Tlim
G4double SampleCosineTheta(G4double trueStepLength, G4double KineticEnergy)
G4StepStatus
Definition: G4StepStatus.hh:49
static const G4double bg2lim
G4StepPoint * GetPreStepPoint() const
G4double GetEnergy(const G4ParticleDefinition *part, G4double range, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.hh:309
CLHEP::HepRandomEngine * rndmEngineMod
Definition: G4VEmModel.hh:400
const G4ThreeVector & GetPosition() const
G4double GetRange(const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.hh:289
G4ParticleChangeForMSC * GetParticleChangeForMSC(const G4ParticleDefinition *p=0)
Definition: G4VMscModel.cc:89
bool G4bool
Definition: G4Types.hh:79
G4double ComputeGeomPathLength(G4double truePathLength)
static const G4double beta2lim
const G4MaterialCutsCouple * couple
static const G4double c1
G4double ComputeGeomLimit(const G4Track &, G4double &presafety, G4double limit)
Definition: G4VMscModel.hh:257
G4ThreeVector fDisplacement
Definition: G4VMscModel.hh:186
G4double ComputeTrueStepLength(G4double geomStepLength)
G4double GetTransportMeanFreePath(const G4ParticleDefinition *part, G4double kinEnergy)
Definition: G4VMscModel.hh:346
G4double GetRadlen() const
Definition: G4Material.hh:218
G4double G4Log(G4double x)
Definition: G4Log.hh:230
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
void SetParticle(const G4ParticleDefinition *)
G4double GetTotNbOfAtomsPerVolume() const
Definition: G4Material.hh:207
G4double LatCorrelation()
void ProposeMomentumDirection(const G4ThreeVector &Pfinal)
void Initialise(const G4ParticleDefinition *, const G4DataVector &)
static const double eV
Definition: G4SIunits.hh:194
static const G4double sigmafactor
G4LossTableManager * theManager
static const G4double epsfactor
int G4lrint(double ad)
Definition: templates.hh:163
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4double facsafety
Definition: G4VMscModel.hh:179
G4double GetDEDX(const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.hh:274
void SetCurrentCouple(const G4MaterialCutsCouple *)
Definition: G4VEmModel.hh:426
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
G4double GetSafety() const
static const G4double b1
G4double Z23(G4int Z) const
Definition: G4Pow.hh:151
G4MscStepLimitType steppingAlgorithm
Definition: G4VMscModel.hh:187
static const double keV
Definition: G4SIunits.hh:195
static const double barn
Definition: G4SIunits.hh:95
G4double currentKinEnergy
double G4double
Definition: G4Types.hh:76
G4double ComputeTheta0(G4double truePathLength, G4double KineticEnergy)
static const G4double sig0[15]
G4ProductionCuts * GetProductionCuts() const
G4double SimpleScattering(G4double xmeanth, G4double x2meanth)
static const double mm
Definition: G4SIunits.hh:102
void StartTracking(G4Track *)
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *particle, G4double KineticEnergy, G4double AtomicNumber, G4double AtomicWeight=0., G4double cut=0., G4double emax=DBL_MAX)
const G4Material * GetMaterial() const
G4double ComputeTruePathLengthLimit(const G4Track &track, G4double &currentMinimalStep)