136 for ( std::vector<G4PhysicsTable*>::iterator it =
fAngleBank.begin();
138 if ( (*it) ) (*it)->clearAndDestroy();
162 for(jEl = 0 ; jEl < numOfEl; ++jEl)
172 G4cout<<
"G4NuclNuclDiffuseElastic::Initialise() the element: "
173 <<(*theElementTable)[jEl]->GetName()<<
G4endl;
222 if (iZ == 1 && iA == 1) theDef =
theProton;
225 else if (iZ == 2 && iA == 3) theDef =
G4He3::He3();
226 else if (iZ == 2 && iA == 4) theDef =
theAlpha;
240 G4double cost = 1 - 0.5*std::fabs(tMand)/ptot2;
242 if( cost >= 1.0 ) cost = 1.0;
243 else if( cost <= -1.0) cost = -1.0;
245 G4double thetaCMS = std::acos(cost);
277 if( z && (kRt > kRtC) )
309 if (iZ == 1 && iA == 1) theDef =
theProton;
312 else if (iZ == 2 && iA == 3) theDef =
G4He3::He3();
313 else if (iZ == 2 && iA == 4) theDef =
theAlpha;
327 G4double cost = 1 - 0.5*std::fabs(tMand)/ptot2;
329 if( cost >= 1.0 ) cost = 1.0;
330 else if( cost <= -1.0) cost = -1.0;
332 G4double thetaCMS = std::acos(cost);
359 if (iZ == 1 && iA == 1) theDef =
theProton;
362 else if (iZ == 2 && iA == 3) theDef =
G4He3::He3();
363 else if (iZ == 2 && iA == 4) theDef =
theAlpha;
377 G4double cost = 1 - 0.5*std::fabs(tMand)/ptot2;
379 if( cost >= 1.0 ) cost = 1.0;
380 else if( cost <= -1.0) cost = -1.0;
382 G4double thetaCMS = std::acos(cost);
402 G4double sigma, bzero, bzero2, bonebyarg, bonebyarg2, damp, damp2;
415 bzero2 = bzero*bzero;
419 bonebyarg2 = bonebyarg*bonebyarg;
423 diffuse = 0.63*
fermi;
431 diffuse = 0.63*
fermi;
460 sigma += mode2k2*bone2 + e2dk3t*bzero*bone;
461 sigma += kr2*bonebyarg2;
479 G4double sigma, bzero, bzero2, bonebyarg, bonebyarg2, damp, damp2;
492 bzero2 = bzero*bzero;
496 bonebyarg2 = bonebyarg*bonebyarg;
500 diffuse = 0.63*
fermi;
509 diffuse = 0.63*
fermi;
523 G4double sinHalfTheta = std::sin(0.5*theta);
524 G4double sinHalfTheta2 = sinHalfTheta*sinHalfTheta;
550 sigma += mode2k2*bone2;
551 sigma += e2dk3t*bzero*bone;
554 sigma += kr2*bonebyarg2;
572 theta = std::sqrt(alpha);
576 G4double sigma, bzero, bzero2, bonebyarg, bonebyarg2, damp, damp2;
589 bzero2 = bzero*bzero;
593 bonebyarg2 = bonebyarg*bonebyarg;
597 diffuse = 0.63*
fermi;
606 diffuse = 0.63*
fermi;
621 G4double sinHalfTheta2 = sinHalfTheta*sinHalfTheta;
647 sigma += mode2k2*bone2;
648 sigma += e2dk3t*bzero*bone;
651 sigma += kr2*bonebyarg2;
709 G4double t = 2*p*p*( 1 - std::cos(theta) );
723 G4double norm, result, theta1, theta2, thetaMax, sum = 0.;
733 if (thetaMax >
pi) thetaMax =
pi;
742 for(i = 1; i <= iMax; i++)
744 theta1 = (i-1)*thetaMax/iMax;
745 theta2 = i*thetaMax/iMax;
750 result = 0.5*(theta1 + theta2);
754 if (i > iMax ) result = 0.5*(theta1 + theta2);
760 if(result < 0.) result = 0.;
761 if(result > thetaMax) result = thetaMax;
778 G4double totElab = std::sqrt(m1*m1+p*p);
817 G4int iMomentum, iAngle;
839 G4double kinE = std::sqrt(momentum*momentum + m1*m1) - m1;
841 for( iMomentum = 0; iMomentum <
fEnergyBin; iMomentum++)
845 if( kinE < fEnergyVector->GetLowEdgeEnergy(iMomentum) )
break;
850 if ( iMomentum >= fEnergyBin ) iMomentum = fEnergyBin-1;
851 if ( iMomentum < 0 ) iMomentum = 0;
854 if (iMomentum == fEnergyBin -1 || iMomentum == 0 )
860 for(iAngle = 0; iAngle <
fAngleBin-1; iAngle++)
862 if( position < (*(*
fAngleTable)(iMomentum))(iAngle) )
break;
864 if (iAngle >= fAngleBin-1) iAngle = fAngleBin-2;
879 for(iAngle = 0; iAngle <
fAngleBin-1; iAngle++)
882 if( position > (*(*
fAngleTable)(iMomentum))(iAngle) )
break;
884 if (iAngle >= fAngleBin-1) iAngle = fAngleBin-2;
902 for(iAngle = 0; iAngle < fAngleBin-1; iAngle++)
905 if( position > (*(*
fAngleTable)(iMomentum))(iAngle) )
break;
907 if (iAngle >= fAngleBin-1) iAngle = fAngleBin-2;
921 randAngle = W1*theta1 + W2*theta2;
948 G4cout<<
"G4NuclNuclDiffuseElastic::Initialise() the element with Z = "
949 <<Z<<
"; and A = "<<A<<
G4endl;
969 G4double alpha1, alpha2, alphaMax, alphaCoulomb, delta = 0., sum = 0.;
984 partMom = std::sqrt( kinE*(kinE + 2*m1) );
990 if(alphaMax >
pi) alphaMax =
pi;
1018 alpha1 = alphaCoulomb + delth*(j-1);
1020 alpha2 = alpha1 + delth;
1027 angleVector->
PutValue( j-1 , alpha1, sum );
1045 G4double x1, x2, y1, y2, randAngle;
1049 randAngle = (*fAngleTable)(iMomentum)->GetLowEdgeEnergy(iAngle);
1056 iAngle = (*fAngleTable)(iMomentum)->GetVectorLength() - 1;
1058 y1 = (*(*fAngleTable)(iMomentum))(iAngle-1);
1059 y2 = (*(*fAngleTable)(iMomentum))(iAngle);
1061 x1 = (*fAngleTable)(iMomentum)->GetLowEdgeEnergy(iAngle-1);
1062 x2 = (*fAngleTable)(iMomentum)->GetLowEdgeEnergy(iAngle);
1064 if ( x1 == x2 ) randAngle = x2;
1067 if ( y1 == y2 ) randAngle = x1 + ( x2 - x1 )*
G4UniformRand();
1070 randAngle = x1 + ( position - y1 )*( x2 - x1 )/( y2 - y1 );
1109 t =
SampleT( theParticle, ptot, A);
1112 if(!(t < 0.0 || t >= 0.0))
1116 G4cout <<
"G4NuclNuclDiffuseElastic:WARNING: A = " << A
1117 <<
" mom(GeV)= " << plab/
GeV
1118 <<
" S-wave will be sampled"
1125 G4cout <<
" t= " << t <<
" tmax= " << tmax
1126 <<
" ptot= " << ptot <<
G4endl;
1139 else if( cost <= -1.0)
1146 sint = std::sqrt((1.0-cost)*(1.0+cost));
1150 G4cout <<
"cos(t)=" << cost <<
" std::sin(t)=" << sint <<
G4endl;
1152 G4ThreeVector v1(sint*std::cos(phi),sint*std::sin(phi),cost);
1154 G4LorentzVector nlv1(v1.x(),v1.y(),v1.z(),std::sqrt(ptot*ptot + m1*m1));
1193 G4double cost = std::cos(thetaCMS);
1201 else if( cost <= -1.0)
1208 sint = std::sqrt((1.0-cost)*(1.0+cost));
1212 G4cout <<
"cos(tcms)=" << cost <<
" std::sin(tcms)=" << sint <<
G4endl;
1214 G4ThreeVector v1(sint*std::cos(phi),sint*std::sin(phi),cost);
1216 G4LorentzVector nlv1(v1.x(),v1.y(),v1.z(),std::sqrt(ptot*ptot + m1*m1));
1254 G4double cost = std::cos(thetaLab);
1262 else if( cost <= -1.0)
1269 sint = std::sqrt((1.0-cost)*(1.0+cost));
1273 G4cout <<
"cos(tlab)=" << cost <<
" std::sin(tlab)=" << sint <<
G4endl;
1275 G4ThreeVector v1(sint*std::cos(phi),sint*std::sin(phi),cost);
1277 G4LorentzVector nlv1(v1.x(),v1.y(),v1.z(),std::sqrt(plab*plab + m1*m1));
1303 G4cout<<
"G4NuclNuclDiffuseElastic::TestAngleTable() init the element with Z = "
1304 <<Z<<
"; and A = "<<A<<
G4endl;
1313 G4double alpha1=0., alpha2=0., alphaMax=0., alphaCoulomb=0.;
1314 G4double deltaL10 = 0., deltaL96 = 0., deltaAG = 0.;
1315 G4double sumL10 = 0.,sumL96 = 0.,sumAG = 0.;
1329 alphaMax = kRmax*kRmax/kR2;
1331 if (alphaMax > 4.) alphaMax = 4.;
1333 alphaCoulomb = kRcoul*kRcoul/kR2;
1338 fBeta = a/std::sqrt(1+a*a);
1354 alpha1 = alphaMax*(j-1)/fAngleBin;
1355 alpha2 = alphaMax*( j )/fAngleBin;
1357 if( ( alpha2 > alphaCoulomb ) &&
z )
fAddCoulomb =
true;
1362 alpha1, alpha2,epsilon);
1372 <<sumL10<<
"\t"<<sumL96<<
"\t"<<sumAG<<
G4endl;
1374 angleVector->
PutValue( j-1 , alpha1, sumL10 );
1402 if ( n < 0 ) legPol = 0.;
1403 else if( n == 0 ) legPol = 1.;
1404 else if( n == 1 ) legPol = x;
1405 else if( n == 2 ) legPol = (3.*x*x-1.)/2.;
1406 else if( n == 3 ) legPol = (5.*x*x*x-3.*x)/2.;
1407 else if( n == 4 ) legPol = (35.*x*x*x*x-30.*x*x+3.)/8.;
1408 else if( n == 5 ) legPol = (63.*x*x*x*x*x-70.*x*x*x+15.*x)/8.;
1409 else if( n == 6 ) legPol = (231.*x*x*x*x*x*x-315.*x*x*x*x+105.*x*x-5.)/16.;
1414 legPol = std::sqrt( 2./(n*
CLHEP::pi*std::sin(theta+epsilon)) )*std::sin( (n+0.5)*theta+0.25*
CLHEP::pi );
1426 G4double n2, cofn, shny, chny, fn, gn;
1445 for( n = 1; n <= nMax; n++)
1449 cofn = std::exp(-0.5*n2)/(n2+twox2);
1451 chny = std::cosh(n*y);
1452 shny = std::sinh(n*y);
1454 fn = twox - twoxcos2xy*chny + n*sin2xy*shny;
1455 gn = twoxsin2xy*chny + n*cos2xy*shny;
1466 if(std::abs(x) < 0.0001)
1473 outRe +=
GetErf(x) + cof1*(1-cos2xy)/twox;
1474 outIm += cof1*sin2xy/twox;
1524 order /= std::sqrt(2.);
1527 G4complex a0 = 0.5*(1. + 4.*(1.+im*u2)*cosHalfThetaR2/3.)/sinThetaR;
1528 G4complex a1 = 0.5*(1. + 2.*(1.+im*u2m2p3)*cosHalfThetaR2)/sinThetaR;
1529 G4complex out = gamma*(1. - a1*dTheta) - a0;
1552 order /= std::sqrt(2.);
1554 G4complex a0 = 0.5*(1. + 4.*(1.+im*u2)*cosHalfThetaR2/3.)/sinThetaR;
1555 G4complex a1 = 0.5*(1. + 2.*(1.+im*u2m2p3)*cosHalfThetaR2)/sinThetaR;
1556 G4complex out = -gamma*(1. - a1*dTheta) - a0;
1594 G4double sindTheta = std::sin(dTheta);
1595 G4double persqrt2 = std::sqrt(0.5);
1628 for( n = 0; n <
fMaxL; n++)
1635 shiftN = std::exp( -0.5*(1.-im*
fEtaRatio)*T12b ) - 1.;
1651 G4double T12b,
a, aTemp,
b2, sinThetaH = std::sin(0.5*theta);
1652 G4double sinThetaH2 = sinThetaH*sinThetaH;
1661 for( n = 1; n <
fMaxL; n++)
1663 T12b = aTemp*std::exp(-b2/n)/
n;
1703 fBeta = a/std::sqrt(1+a*a);
1738 fBeta = a/std::sqrt(1+a*a);
1778 if( pN < 0. ) pN = 0.;
1781 if( tN < 0. ) tN = 0.;
1800 fBeta = a/std::sqrt(1+a*a);
1831 G4double proj_energy = proj_mass + pTkin;
1832 G4double proj_momentum = std::sqrt(pTkin*(pTkin+2*proj_mass));
1847 if( proj_momentum >= 1.2 )
1849 fEtaRatio = 0.13*(logS - 5.8579332)*std::pow(sMand,-0.18);
1851 else if( proj_momentum >= 0.6 )
1853 fEtaRatio = -75.5*(std::pow(proj_momentum,0.25)-0.95)/
1854 (std::pow(3*proj_momentum,2.2)+1);
1858 fEtaRatio = 15.5*proj_momentum/(27*proj_momentum*proj_momentum*proj_momentum+2);
1864 if( proj_momentum >= 10. )
1871 if( proj_momentum >= 10.)
1874 A0 = 100. - B0*std::log(3.0e7);
1876 xsection = A0 + B0*std::log(proj_energy) - 11
1877 + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+
1878 0.93827*0.93827,-0.165);
1883 if(pParticle == tParticle)
1885 if( proj_momentum < 0.73 )
1887 hnXsc = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) );
1889 else if( proj_momentum < 1.05 )
1891 hnXsc = 23 + 40*(std::log(proj_momentum/0.73))*
1892 (std::log(proj_momentum/0.73));
1897 75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15);
1903 if( proj_momentum < 0.8 )
1905 hpXsc = 33+30*std::pow(std::log(proj_momentum/1.3),4.0);
1907 else if( proj_momentum < 1.4 )
1909 hpXsc = 33+30*std::pow(std::log(proj_momentum/0.95),2.0);
1914 20.8*(std::pow(proj_momentum,2.0)-1.35)/
1915 (std::pow(proj_momentum,2.50)+0.95);
1933 G4double sindTheta = std::sin(dTheta);
1940 order = std::abs(order);
1950 out = 1. + 0.5*( (0.5-cosFresnel)*(0.5-cosFresnel)+(0.5-sinFresnel)*(0.5-sinFresnel) )*prof2;
1951 out += ( cosFresnel + sinFresnel - 1. )*prof;
1955 out = 0.5*( (0.5-cosFresnel)*(0.5-cosFresnel)+(0.5-sinFresnel)*(0.5-sinFresnel) )*prof2;
1968 const G4double cof[6] = { 76.18009172947146, -86.50532032941677,
1969 24.01409824083091, -1.231739572450155,
1970 0.1208650973866179e-2, -0.5395239384953e-5 } ;
1974 tmp -= (z + 0.5) * std::log(tmp);
1977 for ( j = 0; j <= 5; j++ )
1982 return -tmp + std::log(2.5066282746310005*ser);
1992 G4double modvalue, value2, fact1, fact2, arg, shift, bessel;
1994 modvalue = std::fabs(value);
1996 if ( value < 8.0 && value > -8.0 )
1998 value2 = value*value;
2000 fact1 = 57568490574.0 + value2*(-13362590354.0
2001 + value2*( 651619640.7
2002 + value2*(-11214424.18
2003 + value2*( 77392.33017
2004 + value2*(-184.9052456 ) ) ) ) );
2006 fact2 = 57568490411.0 + value2*( 1029532985.0
2007 + value2*( 9494680.718
2008 + value2*(59272.64853
2009 + value2*(267.8532712
2010 + value2*1.0 ) ) ) );
2012 bessel = fact1/fact2;
2020 shift = modvalue-0.785398164;
2022 fact1 = 1.0 + value2*(-0.1098628627e-2
2023 + value2*(0.2734510407e-4
2024 + value2*(-0.2073370639e-5
2025 + value2*0.2093887211e-6 ) ) );
2027 fact2 = -0.1562499995e-1 + value2*(0.1430488765e-3
2028 + value2*(-0.6911147651e-5
2029 + value2*(0.7621095161e-6
2030 - value2*0.934945152e-7 ) ) );
2032 bessel = std::sqrt(0.636619772/modvalue)*(std::cos(shift)*fact1 - arg*std::sin(shift)*fact2 );
2044 G4double modvalue, value2, fact1, fact2, arg, shift, bessel;
2046 modvalue = std::fabs(value);
2048 if ( modvalue < 8.0 )
2050 value2 = value*value;
2052 fact1 = value*(72362614232.0 + value2*(-7895059235.0
2053 + value2*( 242396853.1
2054 + value2*(-2972611.439
2055 + value2*( 15704.48260
2056 + value2*(-30.16036606 ) ) ) ) ) );
2058 fact2 = 144725228442.0 + value2*(2300535178.0
2059 + value2*(18583304.74
2060 + value2*(99447.43394
2061 + value2*(376.9991397
2062 + value2*1.0 ) ) ) );
2063 bessel = fact1/fact2;
2071 shift = modvalue - 2.356194491;
2073 fact1 = 1.0 + value2*( 0.183105e-2
2074 + value2*(-0.3516396496e-4
2075 + value2*(0.2457520174e-5
2076 + value2*(-0.240337019e-6 ) ) ) );
2078 fact2 = 0.04687499995 + value2*(-0.2002690873e-3
2079 + value2*( 0.8449199096e-5
2080 + value2*(-0.88228987e-6
2081 + value2*0.105787412e-6 ) ) );
2083 bessel = std::sqrt( 0.636619772/modvalue)*(std::cos(shift)*fact1 - arg*std::sin(shift)*fact2);
2085 if (value < 0.0) bessel = -bessel;
G4double Legendre10(T &typeT, F f, G4double a, G4double b)
G4double lowestEnergyLimit
ThreeVector shoot(const G4int Ap, const G4int Af)
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4double CalculateNuclearRad(G4double A)
G4double Legendre96(T &typeT, F f, G4double a, G4double b)
void PutValue(size_t binNumber, G4double binValue, G4double dataValue)
G4double GetKineticEnergy() const
G4NuclNuclDiffuseElastic()
CLHEP::Hep3Vector G4ThreeVector
G4double GetExpSin(G4double x)
G4double CalculateAm(G4double momentum, G4double n, G4double Z)
G4double fNuclearRadiusSquare
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
G4double SampleTableThetaCMS(const G4ParticleDefinition *aParticle, G4double p, G4double Z, G4double A)
G4double GetScatteringAngle(G4int iMomentum, G4int iAngle, G4double position)
G4double DampFactor(G4double z)
G4double GetExpCos(G4double x)
G4double GetDiffElasticProb(G4double theta)
G4complex AmplitudeNear(G4double theta)
G4double GetInvCoulombElasticXsc(const G4ParticleDefinition *particle, G4double tMand, G4double momentum, G4double A, G4double Z)
G4complex PhaseNear(G4double theta)
G4double fHalfRutThetaTg2
G4complex CoulombAmplitude(G4double theta)
G4double GetErf(G4double x)
G4ParticleDefinition * GetDefinition() const
G4complex AmplitudeGla(G4double theta)
G4double GetDiffuseElasticSumXsc(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double A, G4double Z)
G4double GetCoulombElasticXsc(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double Z)
void CalculateCoulombPhaseZero()
G4double GetLowEdgeEnergy(size_t binNumber) const
G4double GetDiffuseElasticXsc(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double A)
G4double CalculateParticleBeta(const G4ParticleDefinition *particle, G4double momentum)
std::vector< G4String > fElementNameVector
G4PhysicsLogVector * fEnergyVector
static G4NistManager * Instance()
G4double SampleThetaCMS(const G4ParticleDefinition *aParticle, G4double p, G4double A)
G4double AdaptiveGauss(T &typeT, F f, G4double a, G4double b, G4double e)
G4double Profile(G4double theta)
G4complex AmplitudeGG(G4double theta)
G4double GetTotalMomentum() const
G4ParticleDefinition * theNeutron
G4ParticleDefinition * theDeuteron
const G4ParticleDefinition * thePionPlus
void SetMinEnergy(G4double anEnergy)
G4double CalculateCoulombPhase(G4int n)
std::complex< G4double > G4complex
G4IonTable * GetIonTable() const
G4GLOB_DLL std::ostream G4cout
G4double fRutherfordTheta
G4double GetHadronNucleonXscNS(G4ParticleDefinition *pParticle, G4double pTkin, G4ParticleDefinition *tParticle)
static size_t GetNumberOfElements()
const G4ParticleDefinition * GetDefinition() const
void CalculateRutherfordAnglePar()
void TestAngleTable(const G4ParticleDefinition *theParticle, G4double partMom, G4double Z, G4double A)
void InitParametersGla(const G4DynamicParticle *aParticle, G4double partMom, G4double Z, G4double A)
G4double fRutherfordRatio
G4ParticleDefinition * theProton
G4double GetIntegrandFunction(G4double theta)
G4ParticleDefinition * theAlpha
static G4Triton * Triton()
static G4Proton * Proton()
G4double BesselJone(G4double z)
static G4PionPlus * PionPlus()
std::vector< G4PhysicsTable * > fAngleBank
G4double GetInvElasticXsc(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double A, G4double Z)
G4double SampleT(const G4ParticleDefinition *aParticle, G4double p, G4double A)
G4double GetDiffElasticSumProb(G4double theta)
G4double fNuclearRadiusCof
static G4Neutron * Neutron()
virtual G4double SampleInvariantT(const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
G4complex GammaMore(G4double theta)
static const G4double A[nN]
const G4LorentzVector & Get4Momentum() const
static G4Deuteron * Deuteron()
G4LorentzVector Get4Momentum() const
G4double ThetaCMStoThetaLab(const G4DynamicParticle *aParticle, G4double tmass, G4double thetaCMS)
void InitialiseOnFly(G4double Z, G4double A)
G4double BesselJzero(G4double z)
G4double CalculateZommerfeld(G4double beta, G4double Z1, G4double Z2)
G4double GetPDGMass() const
static G4ParticleTable * GetParticleTable()
void InitDynParameters(const G4ParticleDefinition *theParticle, G4double partMom)
G4double GetRatioGen(G4double theta)
G4complex GammaLess(G4double theta)
static G4PionMinus * PionMinus()
G4double ProfileNear(G4double theta)
G4double GetFresnelIntegrandXsc(G4double alpha)
G4double SampleTableT(const G4ParticleDefinition *aParticle, G4double p, G4double Z, G4double A)
const G4ParticleDefinition * fParticle
std::vector< G4double > fElementNumberVector
G4double GetAtomicMassAmu(const G4String &symb) const
G4complex GetErfcInt(G4complex z)
static const double millibarn
static const double degree
void insertAt(size_t, G4PhysicsVector *)
G4complex GetErfInt(G4complex z)
void SetMaxEnergy(const G4double anEnergy)
G4double CalcMandelstamS(const G4double mp, const G4double mt, const G4double Plab)
G4double fCofAlphaCoulomb
virtual ~G4NuclNuclDiffuseElastic()
G4double GetLegendrePol(G4int n, G4double x)
std::vector< G4Element * > G4ElementTable
G4double lowEnergyRecoilLimit
static G4ElementTable * GetElementTable()
G4double GetPDGCharge() const
static const G4double alpha
G4double GetSint(G4double x)
const G4ParticleDefinition * thePionMinus
G4complex AmplitudeSim(G4double theta)
G4double GetInvElasticSumXsc(const G4ParticleDefinition *particle, G4double tMand, G4double momentum, G4double A, G4double Z)
G4complex GetErfComp(G4complex z, G4int nMax)
G4double ThetaLabToThetaCMS(const G4DynamicParticle *aParticle, G4double tmass, G4double thetaLab)
G4double GetDiffElasticSumProbA(G4double alpha)
G4double IntegralElasticProb(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double A)
G4double lowEnergyLimitHE
static const double fermi
G4double SampleThetaLab(const G4HadProjectile *aParticle, G4double tmass, G4double A)
G4int GetBaryonNumber() const
G4double GetTotalMomentum() const
G4double GetCint(G4double x)
CLHEP::HepLorentzVector G4LorentzVector
G4PhysicsTable * fAngleTable
G4complex GammaLogarithm(G4complex xx)
G4double BesselOneByArg(G4double z)
void InitParameters(const G4ParticleDefinition *theParticle, G4double partMom, G4double Z, G4double A)