Geant4  10.01.p03
G4GaussLaguerreQ.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4GaussLaguerreQ.hh 67970 2013-03-13 10:10:06Z gcosmo $
28 //
29 // Class description:
30 //
31 // Class for realization of Gauss-Laguerre quadrature method
32 // Roots of ortogonal polynoms and corresponding weights are calculated based on
33 // iteration method (by bisection Newton algorithm). Constant values for initial
34 // approximations were derived from the book: M. Abramowitz, I. Stegun, Handbook
35 // of mathematical functions, DOVER Publications INC, New York 1965 ; chapters 9,
36 // 10, and 22 .
37 //
38 // ---------------------------------------------------------------------------
39 //
40 // Constructor for Gauss-Laguerre quadrature method: integral from zero to
41 // infinity of std::pow(x,alpha)*std::exp(-x)*f(x). The value of nLaguerre sets the accuracy.
42 // The constructor creates arrays fAbscissa[0,..,nLaguerre-1] and
43 // fWeight[0,..,nLaguerre-1] . The function GaussLaguerre(f) should be called
44 // then with any f .
45 //
46 // G4GaussLaguerreQ( function pFunction,
47 // G4double alpha,
48 // G4int nLaguerre )
49 //
50 //
51 // -------------------------------------------------------------------------
52 //
53 // Gauss-Laguerre method for integration of std::pow(x,alpha)*std::exp(-x)*pFunction(x)
54 // from zero up to infinity. pFunction is evaluated in fNumber points for which
55 // fAbscissa[i] and fWeight[i] arrays were created in constructor
56 //
57 // G4double Integral() const
58 
59 // ------------------------------- HISTORY --------------------------------
60 //
61 // 13.05.97 V.Grichine (Vladimir.Grichine@cern.chz0
62 
63 #ifndef G4GAUSSLAGUERREQ_HH
64 #define G4GAUSSLAGUERREQ_HH
65 
66 #include "G4VGaussianQuadrature.hh"
67 
69 {
70 public:
71  G4GaussLaguerreQ( function pFunction,
73  G4int nLaguerre ) ;
74 
75  // Methods
76 
77  G4double Integral() const ;
78 
79 private:
80 
83 };
84 
85 #endif
G4GaussLaguerreQ(function pFunction, G4double alpha, G4int nLaguerre)
G4GaussLaguerreQ & operator=(const G4GaussLaguerreQ &)
int G4int
Definition: G4Types.hh:78
double G4double
Definition: G4Types.hh:76
static const G4double alpha
G4double Integral() const