Geant4  10.01.p03
G4PreCompoundTriton.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4PreCompoundTriton.cc 90591 2015-06-04 13:45:29Z gcosmo $
27 //
28 // -------------------------------------------------------------------
29 //
30 // GEANT4 Class file
31 //
32 //
33 // File name: G4PreCompoundTriton
34 //
35 // Author: V.Lara
36 //
37 // Modified:
38 // 21.08.2008 J. M. Quesada add choice of options
39 // 20.08.2010 V.Ivanchenko added G4Pow and G4PreCompoundParameters pointers
40 // use int Z and A and cleanup
41 // 05.07.2013 J.M. Quesada FactorialFactor fixed
42 //
43 
44 #include "G4PreCompoundTriton.hh"
45 #include "G4SystemOfUnits.hh"
46 #include "G4Triton.hh"
47 
49  : G4PreCompoundIon(G4Triton::Triton(), &theTritonCoulombBarrier)
50 {
51  ResidualA = GetRestA();
52  ResidualZ = GetRestZ();
53  theA = GetA();
54  theZ = GetZ();
58 }
59 
61 {}
62 
64 {
65  return G4double((N-3)*(P-2)*(N-2)*(P-1)*(N-1)*P)/12.0;
66 }
67 
69 {
70  return 243.0/G4double(A*A);
71 }
72 
74 {
75  G4double rj = 0.0;
76  if(nCharged >= 1 && (nParticles-nCharged) >= 2) {
77  G4double denominator =
78  G4double(nParticles*(nParticles-1)*(nParticles-2));
79  rj = G4double(3*nCharged*(nParticles-nCharged)*(nParticles-nCharged-1))
80  /denominator;
81  }
82  return rj;
83 }
84 
86 //J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections
87 //OPT=0 Dostrovski's parameterization
88 //OPT=1,2 Chatterjee's paramaterization
89 //OPT=3,4 Kalbach's parameterization
90 //
92 {
93  ResidualA = GetRestA();
94  ResidualZ = GetRestZ();
95  theA = GetA();
96  theZ = GetZ();
100 
101  if (OPTxs==0) { return GetOpt0( K); }
102  else if( OPTxs==1 || OPTxs==2) { return GetOpt12( K); }
103  else if (OPTxs==3 || OPTxs==4) { return GetOpt34( K); }
104  else{
105  std::ostringstream errOs;
106  errOs << "BAD TRITON CROSS SECTION OPTION !!" <<G4endl;
107  throw G4HadronicException(__FILE__, __LINE__, errOs.str());
108  return 0.;
109  }
110 }
111 
113 {
114  G4double C = 0.0;
115  G4int aZ = theZ + ResidualZ;
116  if (aZ >= 70)
117  {
118  C = 0.10;
119  }
120  else
121  {
122  C = ((((0.15417e-06*aZ) - 0.29875e-04)*aZ + 0.21071e-02)*aZ - 0.66612e-01)*aZ + 0.98375;
123  }
124 
125  return 1.0 + C/3.0;
126 }
127 
128 //
129 //********************* OPT=1,2 : Chatterjee's cross section *****************
130 //(fitting to cross section from Bechetti & Greenles OM potential)
131 
133 {
134  G4double Kc=K;
135 
136  // JMQ xsec is set constat above limit of validity
137  if (K > 50*MeV) { Kc=50*MeV; }
138 
139  G4double landa ,mu ,nu ,p , Ec,q,r,ji,xs;
140 
141  const G4double p0 = -11.04;
142  const G4double p1 = 619.1;
143  const G4double p2 = -2147.;
144  const G4double landa0 = -0.0426;
145  const G4double landa1 = -10.33;
146  const G4double mm0 = 601.9;
147  const G4double mu1 = 0.37;
148  const G4double nu0 = 583.0;
149  const G4double nu1 = -546.2;
150  const G4double nu2 = 1.718;
151  const G4double delta=1.2;
152 
153  Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta);
154  p = p0 + p1/Ec + p2/(Ec*Ec);
155  landa = landa0*ResidualA + landa1;
156 
157  G4double resmu1 = g4pow->powZ(ResidualA,mu1);
158  mu = mm0*resmu1;
159  nu = resmu1*(nu0 + nu1*Ec + nu2*(Ec*Ec));
160  q = landa - nu/(Ec*Ec) - 2*p*Ec;
161  r = mu + 2*nu/Ec + p*(Ec*Ec);
162 
163  ji=std::max(Kc,Ec);
164  if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;}
165  else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;}
166 
167  xs = std::max(xs, 0.0);
168  return xs;
169 }
170 
171 // *********** OPT=3,4 : Kalbach's cross sections (from PRECO code)*************
173 // ** t from o.m. of hafele, flynn et al
174 {
175  const G4double flow = 1.e-18;
176  const G4double spill= 1.e+18;
177 
178  const G4double p0 = -21.45;
179  const G4double p1 = 484.7;
180  const G4double p2 = -1608.;
181  const G4double landa0 = 0.0186;
182  const G4double landa1 = -8.90;
183  const G4double mm0 = 686.3;
184  const G4double mu1 = 0.325;
185  const G4double nu0 = 368.9;
186  const G4double nu1 = -522.2;
187  const G4double nu2 = -4.998;
188 
189  const G4double ra = 0.80;
190  const G4double signor = 1.0;
191 
192  //JMQ 13/02/09 increase of reduced radius to lower the barrier
193  // ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra);
194  G4double ec = 1.44 * theZ * ResidualZ / (1.7*ResidualAthrd+ra);
195  G4double ecsq = ec * ec;
196  G4double p = p0 + p1/ec + p2/ecsq;
197  G4double landa = landa0*ResidualA + landa1;
198  G4double a = g4pow->powZ(ResidualA,mu1);
199  G4double mu = mm0 * a;
200  G4double nu = a* (nu0+nu1*ec+nu2*ecsq);
201  G4double xnulam = nu / landa;
202  G4double etest = 0.0;
203  if (xnulam > spill) { xnulam=0.; }
204  else if (xnulam >= flow) { etest = 1.2 *std::sqrt(xnulam); }
205 
206  a = -2.*p*ec + landa - nu/ecsq;
207  G4double b = p*ecsq + mu + 2.*nu/ec;
208  G4double ecut = 0.;
209  G4double cut = a*a - 4.*p*b;
210  if (cut > 0.) { ecut = std::sqrt(cut); }
211  ecut = (ecut-a) / (2*p);
212 
213  //JMQ 290310 for avoiding unphysical increase below minimum (at ecut)
214  // ecut<0 means that there is no cut with energy axis, i.e. xs is set
215  // to 0 bellow minimum
216 
217  G4double elab = K * FragmentA / G4double(ResidualA);
218  G4double sig = 0.;
219 
220  if (elab <= ec) {
221  if (elab > ecut) { sig = std::max(0.0,(p*elab*elab+a*elab+b) * signor); }
222 
223  } else {
224  sig = (landa*elab+mu+nu/elab) * signor;
225  G4double geom = 0.;
226  if (xnulam >= flow && elab >= etest) {
227  geom = std::sqrt(theA*K);
228  geom = 1.23*ResidualAthrd + ra + 4.573/geom;
229  geom = 31.416 * geom * geom;
230  }
231  sig = std::max(geom,sig);
232  }
233  return sig;
234 }
static const double MeV
Definition: G4SIunits.hh:193
G4double GetOpt12(G4double K)
G4double ResidualA13() const
G4int GetA() const
virtual G4double GetRj(G4int NumberParticles, G4int NumberCharged)
const G4double nu1
G4double a
Definition: TRTMaterials.hh:39
G4double GetOpt34(G4double K)
G4double GetOpt0(G4double ekin)
int G4int
Definition: G4Types.hh:78
const G4double mm0
virtual G4double GetAlpha()
G4double Z13(G4int Z) const
Definition: G4Pow.hh:127
const G4double landa1
const G4double nu0
virtual G4double CoalescenceFactor(G4int A)
const G4double p2
const G4double p1
G4int GetRestZ() const
static const G4double A[nN]
const G4double mu1
const G4double p0
T max(const T t1, const T t2)
brief Return the largest of the two arguments
const G4double nu2
G4int GetRestA() const
#define G4endl
Definition: G4ios.hh:61
G4int GetZ() const
G4double powZ(G4int Z, G4double y) const
Definition: G4Pow.hh:256
double G4double
Definition: G4Types.hh:76
const G4double landa0
virtual G4double FactorialFactor(G4int N, G4int P)
virtual G4double CrossSection(G4double ekin)