Geant4  10.01.p03
G4INCLEventInfo.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // INCL++ intra-nuclear cascade model
27 // Alain Boudard, CEA-Saclay, France
28 // Joseph Cugnon, University of Liege, Belgium
29 // Jean-Christophe David, CEA-Saclay, France
30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31 // Sylvie Leray, CEA-Saclay, France
32 // Davide Mancusi, CEA-Saclay, France
33 //
34 #define INCLXX_IN_GEANT4_MODE 1
35 
36 #include "globals.hh"
37 
47 #include "G4INCLEventInfo.hh"
48 #include "G4INCLGlobals.hh"
49 #include "G4INCLParticleTable.hh"
50 #include <cmath>
51 
52 namespace G4INCL {
53 
55 
56 #ifdef INCL_INVERSE_KINEMATICS
57  void EventInfo::fillInverseKinematics(const Double_t gamma) {
58  const Double_t beta = std::sqrt(1.-1./(gamma*gamma));
59  for(Int_t i=0; i<nParticles; ++i) {
60  // determine the particle mass from the kinetic energy and the momentum;
61  // this ensures consistency with the masses uses by the models
62  Double_t mass;
63  if(EKin[i]>0.) {
64  mass = std::max(
65  0.5 * (px[i]*px[i]+py[i]*py[i]+pz[i]*pz[i]-EKin[i]*EKin[i]) / EKin[i],
66  0.0);
67  } else {
68  INCL_WARN("Particle with null kinetic energy in fillInverseKinematics, cannot determine its mass:\n"
69  << " A=" << A[i] << ", Z=" << Z[i] << '\n'
70  << " EKin=" << EKin[i] << ", px=" << px[i] << ", py=" << py[i] << ", pz=" << pz[i] << '\n'
71  << " Falling back to the mass from the INCL ParticleTable" << '\n');
72  mass = ParticleTable::getRealMass(A[i], Z[i]);
73  }
74 
75  const Double_t ETot = EKin[i] + mass;
76  const Double_t ETotPrime = gamma*(ETot - beta*pz[i]);
77  EKinPrime[i] = ETotPrime - mass;
78  pzPrime[i] = -gamma*(pz[i] - beta*ETot);
79  const Double_t pPrime = std::sqrt(px[i]*px[i] + py[i]*py[i] + pzPrime[i]*pzPrime[i]);
80  const Double_t cosThetaPrime = (pPrime>0.) ? (pzPrime[i]/pPrime) : 1.;
81  if(cosThetaPrime>=1.)
82  thetaPrime[i] = 0.;
83  else if(cosThetaPrime<=-1.)
84  thetaPrime[i] = 180.;
85  else
86  thetaPrime[i] = Math::toDegrees(Math::arcCos(cosThetaPrime));
87  }
88  }
89 #endif // INCL_INVERSE_KINEMATICS
90 
91  void EventInfo::remnantToParticle(const G4int remnantIndex) {
92  A[nParticles] = ARem[remnantIndex];
93  Z[nParticles] = ZRem[remnantIndex];
95 
96  px[nParticles] = pxRem[remnantIndex];
97  py[nParticles] = pyRem[remnantIndex];
98  pz[nParticles] = pzRem[remnantIndex];
99 
100  const G4double plab = std::sqrt(pxRem[remnantIndex]*pxRem[remnantIndex]
101  +pyRem[remnantIndex]*pyRem[remnantIndex]
102  +pzRem[remnantIndex]*pzRem[remnantIndex]);
103  G4double pznorm = pzRem[remnantIndex]/plab;
104  if(pznorm>1.)
105  pznorm = 1.;
106  else if(pznorm<-1.)
107  pznorm = -1.;
109  phi[nParticles] = Math::toDegrees(std::atan2(pyRem[remnantIndex],pxRem[remnantIndex]));
110 
111  EKin[nParticles] = EKinRem[remnantIndex];
112  origin[nParticles] = -1; // Origin: cascade
113  history.push_back(""); // history
114  nParticles++;
115 // assert(history.size()==(unsigned int)nParticles);
116  }
117 }
118 
G4double arcCos(const G4double x)
Calculates arccos with some tolerance on illegal arguments.
Float_t emissionTime[maxSizeParticles]
Emission time [fm/c].
Float_t py[maxSizeParticles]
Particle momentum, y component [MeV/c].
#define INCL_WARN(x)
G4double toDegrees(G4double radians)
Float_t EKin[maxSizeParticles]
Particle kinetic energy [MeV].
#define G4ThreadLocal
Definition: tls.hh:89
Float_t EKinRem[maxSizeRemnants]
Remnant kinetic energy [MeV].
int G4int
Definition: G4Types.hh:78
Float_t stoppingTime
Cascade stopping time [fm/c].
Float_t pyRem[maxSizeRemnants]
Remnant momentum, y component [MeV/c].
Float_t pz[maxSizeParticles]
Particle momentum, z component [MeV/c].
Short_t ZRem[maxSizeRemnants]
Remnant charge number.
static G4ThreadLocal Int_t eventNumber
Number of the event.
Short_t ARem[maxSizeRemnants]
Remnant mass number.
G4double getRealMass(const G4INCL::ParticleType t)
Get particle mass (in MeV/c^2)
Float_t theta[maxSizeParticles]
Particle momentum polar angle [radians].
Simple container for output of event results.
Short_t Z[maxSizeParticles]
Particle charge number.
Short_t nParticles
Number of particles in the final state.
G4int Int_t
Float_t pzRem[maxSizeRemnants]
Remnant momentum, z component [MeV/c].
void remnantToParticle(const G4int remnantIndex)
Move a remnant to the particle array.
Float_t pxRem[maxSizeRemnants]
Remnant momentum, x component [MeV/c].
Short_t A[maxSizeParticles]
Particle mass number.
T max(const T t1, const T t2)
brief Return the largest of the two arguments
Float_t phi[maxSizeParticles]
Particle momentum azimuthal angle [radians].
G4double Double_t
double G4double
Definition: G4Types.hh:76
Float_t px[maxSizeParticles]
Particle momentum, x component [MeV/c].
Short_t origin[maxSizeParticles]
Origin of the particle.
std::vector< std::string > history
History of the particle.