72 useGNASHTransition(false), OPTxs(3), useSICB(false),
73 useNGB(false), useSCO(false), useCEMtr(true), maxZ(3), maxA(5)
114 ed <<
"G4PreCompoundModel is used for ";
123 if(primary ==
proton) { Zp = 1; }
148 for(G4ReactionProductVector::iterator i= result->begin();
149 i != result->end(); ++i)
153 (*i)->GetTotalEnergy(),
154 (*i)->GetMomentum());
177 if ((Z <
maxZ && A <
maxA) || Eex < MeV /*|| Eex > 3.*
MeV*A*/) {
184 const G4int countmax = 10000;
191 G4int EquilibriumExcitonNumber =
202 G4bool ThereIsTransition =
false;
218 if (test <= EquilibriumExcitonNumber) { go_ahead=
true; }
229 G4double TotalTransitionProbability =
240 if(!go_ahead || P1 <= P2+P3 ||
266 G4double TotalProbability = TotalEmissionProbability
267 + TotalTransitionProbability;
270 if (TotalProbability*
G4UniformRand() > TotalEmissionProbability)
274 ThereIsTransition =
true;
282 ThereIsTransition =
false;
286 }
while (ThereIsTransition);
287 if(count >= countmax) {
289 ed <<
"G4PreCompoundModel loop over " << countmax <<
" iterations; "
290 <<
"current G4Fragment: \n" << aFragment;
364 outFile <<
"The GEANT4 precompound model is considered as an extension of the\n"
365 <<
"hadron kinetic model. It gives a possibility to extend the low energy range\n"
366 <<
"of the hadron kinetic model for nucleon-nucleus inelastic collision and it \n"
367 <<
"provides a ”smooth” transition from kinetic stage of reaction described by the\n"
368 <<
"hadron kinetic model to the equilibrium stage of reaction described by the\n"
369 <<
"equilibrium deexcitation models.\n"
370 <<
"The initial information for calculation of pre-compound nuclear stage\n"
371 <<
"consists of the atomic mass number A, charge Z of residual nucleus, its\n"
372 <<
"four momentum P0 , excitation energy U and number of excitons n, which equals\n"
373 <<
"the sum of the number of particles p (from them p_Z are charged) and the number of\n"
375 <<
"At the preequilibrium stage of reaction, we follow the exciton model approach in ref. [1],\n"
376 <<
"taking into account the competition among all possible nuclear transitions\n"
377 <<
"with ∆n = +2, −2, 0 (which are defined by their associated transition probabilities) and\n"
378 <<
"the emission of neutrons, protons, deutrons, thritium and helium nuclei (also defined by\n"
379 <<
"their associated emission probabilities according to exciton model)\n"
381 <<
"[1] K.K. Gudima, S.G. Mashnik, V.D. Toneev, Nucl. Phys. A401 329 (1983)\n"
387 outFile <<
"description of precompound model as used with DeExcite()"
virtual void PerformTransition(G4Fragment &aFragment)=0
void UseDefaultEmission()
void PerformEquilibriumEmission(const G4Fragment &aFragment, G4ReactionProductVector *theResult) const
static G4double GetNuclearMass(const G4double A, const G4double Z)
virtual ~G4PreCompoundModel()
static const G4double * P1[nN]
std::ostringstream G4ExceptionDescription
G4PreCompoundEmission * theEmission
G4PreCompoundModel(G4ExcitationHandler *ptr=0)
const G4ParticleDefinition * neutron
void SetNumberOfHoles(G4int valueTot, G4int valueP=0)
G4bool useGNASHTransition
G4double GetTransitionProb2() const
void UseGNASHTransition()
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &thePrimary, G4Nucleus &theNucleus)
const G4String & GetParticleName() const
G4HadFinalState theResult
void SetStatusChange(G4HadFinalStateStatus aS)
void SetExcitationHandler(G4ExcitationHandler *ptr)
std::vector< G4ReactionProduct * > G4ReactionProductVector
void SetNumberOfExcitedParticle(G4int valueTot, G4int valueP)
G4ExcitationHandler * GetExcitationHandler() const
void UseDefaultTransition()
const G4ParticleDefinition * GetDefinition() const
G4VPreCompoundTransitions * theTransition
void UseCEMtr(G4bool use)
G4double GetGlobalTime() const
static G4Proton * Proton()
static G4Neutron * Neutron()
G4double GetTransitionProb1() const
static const G4double A[nN]
const G4LorentzVector & Get4Momentum() const
virtual G4ReactionProductVector * DeExcite(G4Fragment &aFragment)
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
virtual G4double CalculateProbability(const G4Fragment &aFragment)=0
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
G4ReactionProduct * PerformEmission(G4Fragment &aFragment)
void SetCreationTime(G4double time)
G4int GetNumberOfExcitons() const
virtual void ModelDescription(std::ostream &outFile) const
static const G4double * P2[nN]
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
G4double GetTransitionProb3() const
const G4ParticleDefinition * proton
virtual void DeExciteModelDescription(std::ostream &outFile) const
G4double GetLevelDensity()
G4double GetExcitationEnergy() const
void Initialize(const G4Fragment &aFragment)
G4double GetTotalProbability(const G4Fragment &aFragment)
CLHEP::HepLorentzVector G4LorentzVector