Geant4
10.01.p03
Main Page
Related Pages
Modules
Namespaces
Classes
Files
File List
File Members
G4HelixImplicitEuler.hh
Go to the documentation of this file.
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
//
27
// $Id: G4HelixImplicitEuler.hh 66356 2012-12-18 09:02:32Z gcosmo $
28
//
29
//
30
// class G4HelixImplicitEuler
31
//
32
// Class description:
33
//
34
// Helix Implicit Euler stepper for magnetic field:
35
// x_1 = x_0 + 1/2 * ( helix(h,t_0,x_0)
36
// + helix(h,t_0+h,x_0+helix(h,t0,x0) ) )
37
// Second order solver.
38
// Take the current derivative and add it to the current position.
39
// Take the output and its derivative. Add the mean of both derivatives
40
// to form the final output.
41
42
// History:
43
// - Created. W.Wander <wwc@mit.edu>, 03/11/98
44
// -------------------------------------------------------------------
45
46
#ifndef G4HELIXIMPLICITEULER_HH
47
#define G4HELIXIMPLICITEULER_HH
48
49
#include "
G4MagHelicalStepper.hh
"
50
51
class
G4HelixImplicitEuler
:
public
G4MagHelicalStepper
52
{
53
54
public
:
// with description
55
56
G4HelixImplicitEuler
(
G4Mag_EqRhs
*EqRhs)
57
:
G4MagHelicalStepper
(EqRhs) {}
58
59
~G4HelixImplicitEuler
() {}
60
61
void
DumbStepper
(
const
G4double
y[],
62
G4ThreeVector
Bfld,
63
G4double
h,
64
G4double
yout[]);
65
66
public
:
// without description
67
68
G4int
IntegratorOrder
()
const
{
return
2; }
69
};
70
71
#endif
/* G4HELIXIMPLICITEULER_HH */
G4ThreeVector
CLHEP::Hep3Vector G4ThreeVector
Definition:
G4ThreeVector.hh:42
G4HelixImplicitEuler::~G4HelixImplicitEuler
~G4HelixImplicitEuler()
Definition:
G4HelixImplicitEuler.hh:59
G4int
int G4int
Definition:
G4Types.hh:78
G4HelixImplicitEuler::G4HelixImplicitEuler
G4HelixImplicitEuler(G4Mag_EqRhs *EqRhs)
Definition:
G4HelixImplicitEuler.hh:56
G4HelixImplicitEuler
Definition:
G4HelixImplicitEuler.hh:51
G4HelixImplicitEuler::DumbStepper
void DumbStepper(const G4double y[], G4ThreeVector Bfld, G4double h, G4double yout[])
Definition:
G4HelixImplicitEuler.cc:46
G4MagHelicalStepper.hh
G4MagHelicalStepper
Definition:
G4MagHelicalStepper.hh:58
G4Mag_EqRhs
Definition:
G4Mag_EqRhs.hh:49
G4double
double G4double
Definition:
G4Types.hh:76
G4HelixImplicitEuler::IntegratorOrder
G4int IntegratorOrder() const
Definition:
G4HelixImplicitEuler.hh:68
geant4.10.01.p03
source
geometry
magneticfield
include
G4HelixImplicitEuler.hh
Generated on Fri Feb 19 2016 15:53:27 for Geant4 by
1.8.8