Geant4  10.01.p03
G4ComponentGGHadronNucleusXsc.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // author: V. Grichine
27 //
28 // 25.04.12 V. Grichine - first implementation
29 
31 
32 #include "G4PhysicalConstants.hh"
33 #include "G4SystemOfUnits.hh"
34 #include "G4ParticleTable.hh"
35 #include "G4IonTable.hh"
36 #include "G4ParticleDefinition.hh"
37 #include "G4DynamicParticle.hh"
38 #include "G4HadronNucleonXsc.hh"
39 
40 
42 //
43 
45  : G4VComponentCrossSection("Glauber-Gribov"),
46 // fUpperLimit(100000*GeV),
47  fLowerLimit(10.*MeV),// fLowerLimit(3*GeV),
48  fRadiusConst(1.08*fermi), // 1.1, 1.3 ?
49  fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0), fProductionXsc(0.0),
50  fDiffractionXsc(0.0)
51 // , fHadronNucleonXsc(0.0)
52 {
81  theA = G4Alpha::Alpha();
82  theHe3 = G4He3::He3();
83 
84  hnXsc = new G4HadronNucleonXsc();
85 }
86 
88 //
89 //
90 
92 {
93  if (hnXsc) delete hnXsc;
94 }
95 
97 
99  G4double kinEnergy,
100  G4int Z, G4int A)
101 {
102  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
103  kinEnergy);
104  fTotalXsc = GetIsoCrossSection(aDP, Z, A);
105  delete aDP;
106 
107  return fTotalXsc;
108 }
109 
111 
113  G4double kinEnergy,
114  G4int Z, G4double A)
115 {
116  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
117  kinEnergy);
118  fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A));
119  delete aDP;
120 
121  return fTotalXsc;
122 }
123 
125 
127  G4double kinEnergy,
128  G4int Z, G4int A)
129 {
130  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
131  kinEnergy);
132  fTotalXsc = GetIsoCrossSection(aDP, Z, A);
133  delete aDP;
134 
135  return fInelasticXsc;
136 }
137 
139 
141  G4double kinEnergy,
142  G4int Z, G4int A)
143 {
144  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
145  kinEnergy);
146  fTotalXsc = GetIsoCrossSection(aDP, Z, A);
147  delete aDP;
148 
149  return fProductionXsc;
150 }
151 
153 
155  G4double kinEnergy,
156  G4int Z, G4double A)
157 {
158  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
159  kinEnergy);
160  fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A));
161  delete aDP;
162 
163  return fInelasticXsc;
164 }
165 
167 
169  G4double kinEnergy,
170  G4int Z, G4double A)
171 {
172  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
173  kinEnergy);
174  fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A));
175  delete aDP;
176 
177  return fProductionXsc;
178 }
179 
181 
183  G4double kinEnergy,
184  G4int Z, G4double A)
185 {
186  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
187  kinEnergy);
188  fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A));
189  delete aDP;
190 
191  return fElasticXsc;
192 }
193 
195 
197  G4double kinEnergy,
198  G4int Z, G4int A)
199 {
200  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
201  kinEnergy);
202  fTotalXsc = GetIsoCrossSection(aDP, Z, A);
203  delete aDP;
204 
205  return fElasticXsc;
206 }
207 
209 
211  G4double kinEnergy,
212  G4int Z, G4int A)
213 {
214  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
215  kinEnergy);
216  fTotalXsc = GetIsoCrossSection(aDP, Z, A);
217  delete aDP;
218  G4double ratio = 0.;
219 
220  if(fInelasticXsc > 0.)
221  {
223  if(ratio < 0.) ratio = 0.;
224  }
225  return ratio;
226 }
227 
228 
229 
230 
232 
233 G4bool
235  G4int Z, G4int /*A*/,
236  const G4Element*,
237  const G4Material*)
238 {
239  G4bool applicable = false;
240  // G4int baryonNumber = aDP->GetDefinition()->GetBaryonNumber();
241  G4double kineticEnergy = aDP->GetKineticEnergy();
242 
243  const G4ParticleDefinition* theParticle = aDP->GetDefinition();
244 
245  if (
246  Z >= 1 // >= H for kaons
247  &&
248  (
249  kineticEnergy >= fLowerLimit
250  &&
251  // Z > 1 && // >= He
252  (
253  theParticle == theAProton ||
254  theParticle == theGamma ||
255  theParticle == theSMinus ||
256  theParticle == theProton ||
257  theParticle == theNeutron ||
258  theParticle == thePiPlus ||
259  theParticle == thePiMinus
260  )
261  )
262  )
263  applicable = true;
264 
265  if (
266  Z >= 1 // >= H for kaons
267  &&
268  (
269  kineticEnergy >= 0.01*fLowerLimit
270  &&
271  (
272  theParticle == theKPlus ||
273  theParticle == theKMinus ||
274  theParticle == theK0L ||
275  theParticle == theK0S
276  )
277  )
278  )
279  applicable = true;
280 
281  return applicable;
282 }
283 
285 //
286 // Calculates total and inelastic Xsc, derives elastic as total - inelastic accordong to
287 // Glauber model with Gribov correction calculated in the dipole approximation on
288 // light cone. Gaussian density of point-like nucleons helps to calculate rest integrals of the model.
289 // [1] B.Z. Kopeliovich, nucl-th/0306044 + simplification above
290 
291 G4double
293  G4int Z, G4int A,
294  const G4Isotope*,
295  const G4Element*,
296  const G4Material*)
297 {
298  G4double xsection, sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
299  G4double hpInXsc(0.), hnInXsc(0.);
300  G4double R = GetNucleusRadius(A);
301 
302  G4int N = A - Z; // number of neutrons
303  if (N < 0) N = 0;
304 
305  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
306 
307  if( theParticle == theProton ||
308  theParticle == theNeutron ||
309  theParticle == thePiPlus ||
310  theParticle == thePiMinus )
311  {
312  // sigma = GetHadronNucleonXscNS(aParticle, A, Z);
313 
314  sigma = Z*hnXsc->GetHadronNucleonXscNS(aParticle, theProton);
315 
316  hpInXsc = hnXsc->GetInelasticHadronNucleonXsc();
317 
318  sigma += N*hnXsc->GetHadronNucleonXscNS(aParticle, theNeutron);
319 
320  hnInXsc = hnXsc->GetInelasticHadronNucleonXsc();
321 
322  cofInelastic = 2.4;
323  cofTotal = 2.0;
324  }
325  else if( theParticle == theKPlus ||
326  theParticle == theKMinus ||
327  theParticle == theK0S ||
328  theParticle == theK0L )
329  {
330  // sigma = GetKaonNucleonXscVector(aParticle, A, Z);
331 
332  sigma = Z*hnXsc->GetKaonNucleonXscGG(aParticle, theProton);
333 
334  hpInXsc = hnXsc->GetInelasticHadronNucleonXsc();
335 
336  sigma += N*hnXsc->GetKaonNucleonXscGG(aParticle, theNeutron);
337 
338  hnInXsc = hnXsc->GetInelasticHadronNucleonXsc();
339 
340  cofInelastic = 2.2;
341  cofTotal = 2.0;
342  R = 1.3*fermi;
343  R *= std::pow(G4double(A), 0.3333);
344  }
345  else
346  {
347  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
348  cofInelastic = 2.2;
349  cofTotal = 2.0;
350  }
351  // cofInelastic = 2.0;
352 
353  if( A > 1 )
354  {
355  nucleusSquare = cofTotal*pi*R*R; // basically 2piRR
356  ratio = sigma/nucleusSquare;
357 
358  xsection = nucleusSquare*std::log( 1. + ratio );
359 
360  xsection *= GetParticleBarCorTot(theParticle, Z);
361 
362  fTotalXsc = xsection;
363 
364 
365 
366  fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
367 
368  fInelasticXsc *= GetParticleBarCorIn(theParticle, Z);
369 
371 
372  if(fElasticXsc < 0.) fElasticXsc = 0.;
373 
374  G4double difratio = ratio/(1.+ratio);
375 
376  fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) );
377 
378 
379  // sigma = GetHNinelasticXsc(aParticle, A, Z);
380 
381  sigma = Z*hpInXsc + N*hnInXsc;
382 
383  ratio = sigma/nucleusSquare;
384 
385  fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
386 
387  fProductionXsc *= GetParticleBarCorIn(theParticle, Z);
388 
389  if (fElasticXsc < 0.) fElasticXsc = 0.;
390  }
391  else // H
392  {
393  fTotalXsc = sigma;
394  xsection = sigma;
395 
397 
398  if ( theParticle != theAProton )
399  {
401 
402  // sigma = GetHNinelasticXsc(aParticle, A, Z);
403  // fInelasticXsc = sigma;
404  // fElasticXsc = fTotalXsc - fInelasticXsc;
405  }
406  else if( theParticle == theKPlus ||
407  theParticle == theKMinus ||
408  theParticle == theK0S ||
409  theParticle == theK0L )
410  {
411  fInelasticXsc = hpInXsc;
413  }
414  else
415  {
416  fInelasticXsc = hpInXsc;
418  }
419  if (fElasticXsc < 0.) fElasticXsc = 0.;
420 
421  }
422  return xsection;
423 }
424 
426 //
427 // Return single-diffraction/inelastic cross-section ratio
428 
430 GetRatioSD(const G4DynamicParticle* aParticle, G4int A, G4int Z)
431 {
432  G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
433  G4double R = GetNucleusRadius(A);
434 
435  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
436 
437  if( theParticle == theProton ||
438  theParticle == theNeutron ||
439  theParticle == thePiPlus ||
440  theParticle == thePiMinus )
441  {
442  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
443  cofInelastic = 2.4;
444  cofTotal = 2.0;
445  }
446  else
447  {
448  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
449  cofInelastic = 2.2;
450  cofTotal = 2.0;
451  }
452  nucleusSquare = cofTotal*pi*R*R; // basically 2piRR
453  ratio = sigma/nucleusSquare;
454 
455  fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
456 
457  G4double difratio = ratio/(1.+ratio);
458 
459  fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) );
460 
461  if (fInelasticXsc > 0.) ratio = fDiffractionXsc/fInelasticXsc;
462  else ratio = 0.;
463 
464  return ratio;
465 }
466 
468 //
469 // Return suasi-elastic/inelastic cross-section ratio
470 
472 GetRatioQE(const G4DynamicParticle* aParticle, G4int A, G4int Z)
473 {
474  G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
475  G4double R = GetNucleusRadius(A);
476 
477  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
478 
479  if( theParticle == theProton ||
480  theParticle == theNeutron ||
481  theParticle == thePiPlus ||
482  theParticle == thePiMinus )
483  {
484  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
485  cofInelastic = 2.4;
486  cofTotal = 2.0;
487  }
488  else
489  {
490  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
491  cofInelastic = 2.2;
492  cofTotal = 2.0;
493  }
494  nucleusSquare = cofTotal*pi*R*R; // basically 2piRR
495  ratio = sigma/nucleusSquare;
496 
497  fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
498 
499  sigma = GetHNinelasticXsc(aParticle, A, Z);
500  ratio = sigma/nucleusSquare;
501 
502  fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
503 
505  else ratio = 0.;
506  if ( ratio < 0. ) ratio = 0.;
507 
508  return ratio;
509 }
510 
512 //
513 // Returns hadron-nucleon Xsc according to differnt parametrisations:
514 // [2] E. Levin, hep-ph/9710546
515 // [3] U. Dersch, et al, hep-ex/9910052
516 // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725
517 
518 G4double
520  const G4Element* anElement)
521 {
522  G4int At = G4lrint(anElement->GetN()); // number of nucleons
523  G4int Zt = G4lrint(anElement->GetZ()); // number of protons
524 
525  return GetHadronNucleonXsc(aParticle, At, Zt);
526 }
527 
529 //
530 // Returns hadron-nucleon Xsc according to differnt parametrisations:
531 // [2] E. Levin, hep-ph/9710546
532 // [3] U. Dersch, et al, hep-ex/9910052
533 // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725
534 
535 G4double
537  G4int At, G4int /*Zt*/)
538 {
539  G4double xsection;
540 
541  //G4double targ_mass = G4NucleiProperties::GetNuclearMass(At, Zt);
542 
543  G4double targ_mass = 0.939*GeV; // ~mean neutron and proton ???
544 
545  G4double proj_mass = aParticle->GetMass();
546  G4double proj_momentum = aParticle->GetMomentum().mag();
547  G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
548 
549  sMand /= GeV*GeV; // in GeV for parametrisation
550  proj_momentum /= GeV;
551 
552  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
553 
554  G4double aa = At;
555 
556  if(theParticle == theGamma)
557  {
558  xsection = aa*(0.0677*std::pow(sMand,0.0808) + 0.129*std::pow(sMand,-0.4525));
559  }
560  else if(theParticle == theNeutron) // as proton ???
561  {
562  xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
563  }
564  else if(theParticle == theProton)
565  {
566  xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
567  // xsection = At*( 49.51*std::pow(sMand,-0.097) + 0.314*std::log(sMand)*std::log(sMand) );
568  // xsection = At*( 38.4 + 0.85*std::abs(std::pow(log(sMand),1.47)) );
569  }
570  else if(theParticle == theAProton)
571  {
572  xsection = aa*( 21.70*std::pow(sMand,0.0808) + 98.39*std::pow(sMand,-0.4525));
573  }
574  else if(theParticle == thePiPlus)
575  {
576  xsection = aa*(13.63*std::pow(sMand,0.0808) + 27.56*std::pow(sMand,-0.4525));
577  }
578  else if(theParticle == thePiMinus)
579  {
580  // xsection = At*( 55.2*std::pow(sMand,-0.255) + 0.346*std::log(sMand)*std::log(sMand) );
581  xsection = aa*(13.63*std::pow(sMand,0.0808) + 36.02*std::pow(sMand,-0.4525));
582  }
583  else if(theParticle == theKPlus)
584  {
585  xsection = aa*(11.82*std::pow(sMand,0.0808) + 8.15*std::pow(sMand,-0.4525));
586  }
587  else if(theParticle == theKMinus)
588  {
589  xsection = aa*(11.82*std::pow(sMand,0.0808) + 26.36*std::pow(sMand,-0.4525));
590  }
591  else // as proton ???
592  {
593  xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
594  }
595  xsection *= millibarn;
596  return xsection;
597 }
598 
599 
601 //
602 // Returns hadron-nucleon Xsc according to PDG parametrisation (2005):
603 // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf
604 
605 G4double
607  const G4Element* anElement)
608 {
609  G4int At = G4lrint(anElement->GetN()); // number of nucleons
610  G4int Zt = G4lrint(anElement->GetZ()); // number of protons
611 
612  return GetHadronNucleonXscPDG(aParticle, At, Zt);
613 }
614 
615 
616 
617 
619 //
620 // Returns hadron-nucleon Xsc according to PDG parametrisation (2005):
621 // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf
622 // At = number of nucleons, Zt = number of protons
623 
624 G4double
626  G4int At, G4int Zt)
627 {
628  G4double xsection;
629 
630  G4int Nt = At-Zt; // number of neutrons
631  if (Nt < 0) Nt = 0;
632 
633  G4double zz = Zt;
634  G4double aa = At;
635  G4double nn = Nt;
636 
638  GetIonTable()->GetIonMass(Zt, At);
639 
640  targ_mass = 0.939*GeV; // ~mean neutron and proton ???
641 
642  G4double proj_mass = aParticle->GetMass();
643  G4double proj_momentum = aParticle->GetMomentum().mag();
644 
645  G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
646 
647  sMand /= GeV*GeV; // in GeV for parametrisation
648 
649  // General PDG fit constants
650 
651  G4double s0 = 5.38*5.38; // in Gev^2
652  G4double eta1 = 0.458;
653  G4double eta2 = 0.458;
654  G4double B = 0.308;
655 
656 
657  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
658 
659 
660  if(theParticle == theNeutron) // proton-neutron fit
661  {
662  xsection = zz*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
663  + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
664  xsection += nn*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
665  + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); // pp for nn
666  }
667  else if(theParticle == theProton)
668  {
669 
670  xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
671  + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
672 
673  xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
674  + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
675  }
676  else if(theParticle == theAProton)
677  {
678  xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
679  + 42.53*std::pow(sMand,-eta1) + 33.34*std::pow(sMand,-eta2));
680 
681  xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
682  + 40.15*std::pow(sMand,-eta1) + 30.*std::pow(sMand,-eta2));
683  }
684  else if(theParticle == thePiPlus)
685  {
686  xsection = aa*( 20.86 + B*std::pow(std::log(sMand/s0),2.)
687  + 19.24*std::pow(sMand,-eta1) - 6.03*std::pow(sMand,-eta2));
688  }
689  else if(theParticle == thePiMinus)
690  {
691  xsection = aa*( 20.86 + B*std::pow(std::log(sMand/s0),2.)
692  + 19.24*std::pow(sMand,-eta1) + 6.03*std::pow(sMand,-eta2));
693  }
694  else if(theParticle == theKPlus || theParticle == theK0L )
695  {
696  xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.)
697  + 7.14*std::pow(sMand,-eta1) - 13.45*std::pow(sMand,-eta2));
698 
699  xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.)
700  + 5.17*std::pow(sMand,-eta1) - 7.23*std::pow(sMand,-eta2));
701  }
702  else if(theParticle == theKMinus || theParticle == theK0S )
703  {
704  xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.)
705  + 7.14*std::pow(sMand,-eta1) + 13.45*std::pow(sMand,-eta2));
706 
707  xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.)
708  + 5.17*std::pow(sMand,-eta1) + 7.23*std::pow(sMand,-eta2));
709  }
710  else if(theParticle == theSMinus)
711  {
712  xsection = aa*( 35.20 + B*std::pow(std::log(sMand/s0),2.)
713  - 199.*std::pow(sMand,-eta1) + 264.*std::pow(sMand,-eta2));
714  }
715  else if(theParticle == theGamma) // modify later on
716  {
717  xsection = aa*( 0.0 + B*std::pow(std::log(sMand/s0),2.)
718  + 0.032*std::pow(sMand,-eta1) - 0.0*std::pow(sMand,-eta2));
719 
720  }
721  else // as proton ???
722  {
723  xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
724  + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
725 
726  xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
727  + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
728  }
729  xsection *= millibarn; // parametrised in mb
730  return xsection;
731 }
732 
733 
735 //
736 // Returns hadron-nucleon cross-section based on N. Starkov parametrisation of
737 // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database
738 
739 G4double
741  const G4Element* anElement)
742 {
743  G4int At = G4lrint(anElement->GetN()); // number of nucleons
744  G4int Zt = G4lrint(anElement->GetZ()); // number of protons
745 
746  return GetHadronNucleonXscNS(aParticle, At, Zt);
747 }
748 
749 
750 
751 
753 //
754 // Returns hadron-nucleon cross-section based on N. Starkov parametrisation of
755 // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database
756 
757 G4double
759  G4int At, G4int Zt)
760 {
761  G4double xsection(0);
762  // G4double Delta; DHW 19 May 2011: variable set but not used
763  G4double A0, B0;
764  G4double hpXscv(0);
765  G4double hnXscv(0);
766 
767  G4int Nt = At-Zt; // number of neutrons
768  if (Nt < 0) Nt = 0;
769 
770  G4double aa = At;
771  G4double zz = Zt;
772  G4double nn = Nt;
773 
775  GetIonTable()->GetIonMass(Zt, At);
776 
777  targ_mass = 0.939*GeV; // ~mean neutron and proton ???
778 
779  G4double proj_mass = aParticle->GetMass();
780  G4double proj_energy = aParticle->GetTotalEnergy();
781  G4double proj_momentum = aParticle->GetMomentum().mag();
782 
783  G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
784 
785  sMand /= GeV*GeV; // in GeV for parametrisation
786  proj_momentum /= GeV;
787  proj_energy /= GeV;
788  proj_mass /= GeV;
789 
790  // General PDG fit constants
791 
792  G4double s0 = 5.38*5.38; // in Gev^2
793  G4double eta1 = 0.458;
794  G4double eta2 = 0.458;
795  G4double B = 0.308;
796 
797 
798  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
799 
800 
801  if(theParticle == theNeutron)
802  {
803  if( proj_momentum >= 373.)
804  {
805  return GetHadronNucleonXscPDG(aParticle,At,Zt);
806  }
807  else if( proj_momentum >= 10.)
808  // if( proj_momentum >= 2.)
809  {
810  // Delta = 1.; // DHW 19 May 2011: variable set but not used
811  // if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy;
812 
813  if(proj_momentum >= 10.)
814  {
815  B0 = 7.5;
816  A0 = 100. - B0*std::log(3.0e7);
817 
818  xsection = A0 + B0*std::log(proj_energy) - 11
819  + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+
820  0.93827*0.93827,-0.165); // mb
821  }
822  xsection *= zz + nn;
823  }
824  else
825  {
826  // nn to be pp
827 
828  if( proj_momentum < 0.73 )
829  {
830  hnXscv = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) );
831  }
832  else if( proj_momentum < 1.05 )
833  {
834  hnXscv = 23 + 40*(std::log(proj_momentum/0.73))*
835  (std::log(proj_momentum/0.73));
836  }
837  else // if( proj_momentum < 10. )
838  {
839  hnXscv = 39.0+
840  75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15);
841  }
842  // pn to be np
843 
844  if( proj_momentum < 0.8 )
845  {
846  hpXscv = 33+30*std::pow(std::log(proj_momentum/1.3),4.0);
847  }
848  else if( proj_momentum < 1.4 )
849  {
850  hpXscv = 33+30*std::pow(std::log(proj_momentum/0.95),2.0);
851  }
852  else // if( proj_momentum < 10. )
853  {
854  hpXscv = 33.3+
855  20.8*(std::pow(proj_momentum,2.0)-1.35)/
856  (std::pow(proj_momentum,2.50)+0.95);
857  }
858  xsection = hpXscv*zz + hnXscv*nn;
859  }
860  }
861  else if(theParticle == theProton)
862  {
863  if( proj_momentum >= 373.)
864  {
865  return GetHadronNucleonXscPDG(aParticle,At,Zt);
866  }
867  else if( proj_momentum >= 10.)
868  // if( proj_momentum >= 2.)
869  {
870  // Delta = 1.; DHW 19 May 2011: variable set but not used
871  // if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy;
872 
873  if(proj_momentum >= 10.)
874  {
875  B0 = 7.5;
876  A0 = 100. - B0*std::log(3.0e7);
877 
878  xsection = A0 + B0*std::log(proj_energy) - 11
879  + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+
880  0.93827*0.93827,-0.165); // mb
881  }
882  xsection *= zz + nn;
883  }
884  else
885  {
886  // pp
887 
888  if( proj_momentum < 0.73 )
889  {
890  hpXscv = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) );
891  }
892  else if( proj_momentum < 1.05 )
893  {
894  hpXscv = 23 + 40*(std::log(proj_momentum/0.73))*
895  (std::log(proj_momentum/0.73));
896  }
897  else // if( proj_momentum < 10. )
898  {
899  hpXscv = 39.0+
900  75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15);
901  }
902  // pn to be np
903 
904  if( proj_momentum < 0.8 )
905  {
906  hnXscv = 33+30*std::pow(std::log(proj_momentum/1.3),4.0);
907  }
908  else if( proj_momentum < 1.4 )
909  {
910  hnXscv = 33+30*std::pow(std::log(proj_momentum/0.95),2.0);
911  }
912  else // if( proj_momentum < 10. )
913  {
914  hnXscv = 33.3+
915  20.8*(std::pow(proj_momentum,2.0)-1.35)/
916  (std::pow(proj_momentum,2.50)+0.95);
917  }
918  xsection = hpXscv*zz + hnXscv*nn;
919  // xsection = hpXscv*(Zt + Nt);
920  // xsection = hnXscv*(Zt + Nt);
921  }
922  // xsection *= 0.95;
923  }
924  else if( theParticle == theAProton )
925  {
926  // xsection = Zt*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
927  // + 42.53*std::pow(sMand,-eta1) + 33.34*std::pow(sMand,-eta2));
928 
929  // xsection += Nt*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
930  // + 40.15*std::pow(sMand,-eta1) + 30.*std::pow(sMand,-eta2));
931 
932  G4double logP = std::log(proj_momentum);
933 
934  if( proj_momentum <= 1.0 )
935  {
936  xsection = zz*(65.55 + 53.84/(proj_momentum+1.e-6) );
937  }
938  else
939  {
940  xsection = zz*( 41.1 + 77.2*std::pow( proj_momentum, -0.68)
941  + 0.293*logP*logP - 1.82*logP );
942  }
943  if ( nn > 0.)
944  {
945  xsection += nn*( 41.9 + 96.2*std::pow( proj_momentum, -0.99) - 0.154*logP);
946  }
947  else // H
948  {
949  fInelasticXsc = 38.0 + 38.0*std::pow( proj_momentum, -0.96)
950  - 0.169*logP*logP;
952  }
953  }
954  else if( theParticle == thePiPlus )
955  {
956  if(proj_momentum < 0.4)
957  {
958  G4double Ex3 = 180*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085);
959  hpXscv = Ex3+20.0;
960  }
961  else if( proj_momentum < 1.15 )
962  {
963  G4double Ex4 = 88*(std::log(proj_momentum/0.75))*(std::log(proj_momentum/0.75));
964  hpXscv = Ex4+14.0;
965  }
966  else if(proj_momentum < 3.5)
967  {
968  G4double Ex1 = 3.2*std::exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55);
969  G4double Ex2 = 12*std::exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225);
970  hpXscv = Ex1+Ex2+27.5;
971  }
972  else // if(proj_momentum > 3.5) // mb
973  {
974  hpXscv = 10.6+2.*std::log(proj_energy)+25*std::pow(proj_energy,-0.43);
975  }
976  // pi+n = pi-p??
977 
978  if(proj_momentum < 0.37)
979  {
980  hnXscv = 28.0 + 40*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07);
981  }
982  else if(proj_momentum<0.65)
983  {
984  hnXscv = 26+110*(std::log(proj_momentum/0.48))*(std::log(proj_momentum/0.48));
985  }
986  else if(proj_momentum<1.3)
987  {
988  hnXscv = 36.1+
989  10*std::exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+
990  24*std::exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075);
991  }
992  else if(proj_momentum<3.0)
993  {
994  hnXscv = 36.1+0.079-4.313*std::log(proj_momentum)+
995  3*std::exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+
996  1.5*std::exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12);
997  }
998  else // mb
999  {
1000  hnXscv = 10.6+2*std::log(proj_energy)+30*std::pow(proj_energy,-0.43);
1001  }
1002  xsection = hpXscv*zz + hnXscv*nn;
1003  }
1004  else if(theParticle == thePiMinus)
1005  {
1006  // pi-n = pi+p??
1007 
1008  if(proj_momentum < 0.4)
1009  {
1010  G4double Ex3 = 180*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085);
1011  hnXscv = Ex3+20.0;
1012  }
1013  else if(proj_momentum < 1.15)
1014  {
1015  G4double Ex4 = 88*(std::log(proj_momentum/0.75))*(std::log(proj_momentum/0.75));
1016  hnXscv = Ex4+14.0;
1017  }
1018  else if(proj_momentum < 3.5)
1019  {
1020  G4double Ex1 = 3.2*std::exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55);
1021  G4double Ex2 = 12*std::exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225);
1022  hnXscv = Ex1+Ex2+27.5;
1023  }
1024  else // if(proj_momentum > 3.5) // mb
1025  {
1026  hnXscv = 10.6+2.*std::log(proj_energy)+25*std::pow(proj_energy,-0.43);
1027  }
1028  // pi-p
1029 
1030  if(proj_momentum < 0.37)
1031  {
1032  hpXscv = 28.0 + 40*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07);
1033  }
1034  else if(proj_momentum<0.65)
1035  {
1036  hpXscv = 26+110*(std::log(proj_momentum/0.48))*(std::log(proj_momentum/0.48));
1037  }
1038  else if(proj_momentum<1.3)
1039  {
1040  hpXscv = 36.1+
1041  10*std::exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+
1042  24*std::exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075);
1043  }
1044  else if(proj_momentum<3.0)
1045  {
1046  hpXscv = 36.1+0.079-4.313*std::log(proj_momentum)+
1047  3*std::exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+
1048  1.5*std::exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12);
1049  }
1050  else // mb
1051  {
1052  hpXscv = 10.6+2*std::log(proj_energy)+30*std::pow(proj_energy,-0.43);
1053  }
1054  xsection = hpXscv*zz + hnXscv*nn;
1055  }
1056  else if(theParticle == theKPlus)
1057  {
1058  xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.)
1059  + 7.14*std::pow(sMand,-eta1) - 13.45*std::pow(sMand,-eta2));
1060 
1061  xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.)
1062  + 5.17*std::pow(sMand,-eta1) - 7.23*std::pow(sMand,-eta2));
1063  }
1064  else if(theParticle == theKMinus)
1065  {
1066  xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.)
1067  + 7.14*std::pow(sMand,-eta1) + 13.45*std::pow(sMand,-eta2));
1068 
1069  xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.)
1070  + 5.17*std::pow(sMand,-eta1) + 7.23*std::pow(sMand,-eta2));
1071  }
1072  else if(theParticle == theSMinus)
1073  {
1074  xsection = aa*( 35.20 + B*std::pow(std::log(sMand/s0),2.)
1075  - 199.*std::pow(sMand,-eta1) + 264.*std::pow(sMand,-eta2));
1076  }
1077  else if(theParticle == theGamma) // modify later on
1078  {
1079  xsection = aa*( 0.0 + B*std::pow(std::log(sMand/s0),2.)
1080  + 0.032*std::pow(sMand,-eta1) - 0.0*std::pow(sMand,-eta2));
1081 
1082  }
1083  else // as proton ???
1084  {
1085  xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
1086  + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
1087 
1088  xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
1089  + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
1090  }
1091  xsection *= millibarn; // parametrised in mb
1092  return xsection;
1093 }
1094 
1095 G4double
1097  G4int At, G4int Zt)
1098 {
1099  G4double Tkin, logTkin, xsc, xscP, xscN;
1100  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
1101 
1102  G4int Nt = At-Zt; // number of neutrons
1103  if (Nt < 0) Nt = 0;
1104 
1105  Tkin = aParticle->GetKineticEnergy(); // Tkin in MeV
1106 
1107  if( Tkin > 70*GeV ) return GetHadronNucleonXscPDG(aParticle,At,Zt);
1108 
1109  logTkin = std::log(Tkin); // Tkin in MeV!!!
1110 
1111  if( theParticle == theKPlus )
1112  {
1113  xscP = hnXsc->GetKpProtonTotXscVector(logTkin);
1114  xscN = hnXsc->GetKpNeutronTotXscVector(logTkin);
1115  }
1116  else if( theParticle == theKMinus )
1117  {
1118  xscP = hnXsc->GetKmProtonTotXscVector(logTkin);
1119  xscN = hnXsc->GetKmNeutronTotXscVector(logTkin);
1120  }
1121  else // K-zero as half of K+ and K-
1122  {
1123  xscP = (hnXsc->GetKpProtonTotXscVector(logTkin)+hnXsc->GetKmProtonTotXscVector(logTkin))*0.5;
1124  xscN = (hnXsc->GetKpNeutronTotXscVector(logTkin)+hnXsc->GetKmNeutronTotXscVector(logTkin))*0.5;
1125  }
1126  xsc = xscP*Zt + xscN*Nt;
1127  return xsc;
1128 }
1130 //
1131 // Returns hadron-nucleon inelastic cross-section based on proper parametrisation
1132 
1133 G4double
1135  const G4Element* anElement)
1136 {
1137  G4int At = G4lrint(anElement->GetN()); // number of nucleons
1138  G4int Zt = G4lrint(anElement->GetZ()); // number of protons
1139 
1140  return GetHNinelasticXsc(aParticle, At, Zt);
1141 }
1142 
1144 //
1145 // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation
1146 
1147 G4double
1149  G4int At, G4int Zt)
1150 {
1151  const G4ParticleDefinition* hadron = aParticle->GetDefinition();
1152  G4double sumInelastic;
1153  G4int Nt = At - Zt;
1154  if(Nt < 0) Nt = 0;
1155 
1156  if( hadron == theKPlus )
1157  {
1158  sumInelastic = GetHNinelasticXscVU(aParticle, At, Zt);
1159  }
1160  else
1161  {
1162  //sumInelastic = Zt*GetHadronNucleonXscMK(aParticle, theProton);
1163  // sumInelastic += Nt*GetHadronNucleonXscMK(aParticle, theNeutron);
1164  sumInelastic = G4double(Zt)*GetHadronNucleonXscNS(aParticle, 1, 1);
1165  sumInelastic += G4double(Nt)*GetHadronNucleonXscNS(aParticle, 1, 0);
1166  }
1167  return sumInelastic;
1168 }
1169 
1170 
1172 //
1173 // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation
1174 
1175 G4double
1177  G4int At, G4int Zt)
1178 {
1179  G4int PDGcode = aParticle->GetDefinition()->GetPDGEncoding();
1180  G4int absPDGcode = std::abs(PDGcode);
1181 
1182  G4double Elab = aParticle->GetTotalEnergy();
1183  // (s - 2*0.88*GeV*GeV)/(2*0.939*GeV)/GeV;
1184  G4double Plab = aParticle->GetMomentum().mag();
1185  // std::sqrt(Elab * Elab - 0.88);
1186 
1187  Elab /= GeV;
1188  Plab /= GeV;
1189 
1190  G4double LogPlab = std::log( Plab );
1191  G4double sqrLogPlab = LogPlab * LogPlab;
1192 
1193  //G4cout<<"Plab = "<<Plab<<G4endl;
1194 
1195  G4double NumberOfTargetProtons = G4double(Zt);
1196  G4double NumberOfTargetNucleons = G4double(At);
1197  G4double NumberOfTargetNeutrons = NumberOfTargetNucleons - NumberOfTargetProtons;
1198 
1199  if(NumberOfTargetNeutrons < 0.0) NumberOfTargetNeutrons = 0.0;
1200 
1201  G4double Xtotal, Xelastic, Xinelastic;
1202 
1203  if( absPDGcode > 1000 ) //------Projectile is baryon --------
1204  {
1205  G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) +
1206  0.522*sqrLogPlab - 4.51*LogPlab;
1207 
1208  G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) +
1209  0.513*sqrLogPlab - 4.27*LogPlab;
1210 
1211  G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) +
1212  0.169*sqrLogPlab - 1.85*LogPlab;
1213 
1214  G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) +
1215  0.169*sqrLogPlab - 1.85*LogPlab;
1216 
1217  Xtotal = (NumberOfTargetProtons * XtotPP +
1218  NumberOfTargetNeutrons * XtotPN);
1219 
1220  Xelastic = (NumberOfTargetProtons * XelPP +
1221  NumberOfTargetNeutrons * XelPN);
1222  }
1223  else if( PDGcode == 211 ) //------Projectile is PionPlus -------
1224  {
1225  G4double XtotPiP = 16.4 + 19.3 *std::pow(Plab,-0.42) +
1226  0.19 *sqrLogPlab - 0.0 *LogPlab;
1227 
1228  G4double XtotPiN = 33.0 + 14.0 *std::pow(Plab,-1.36) +
1229  0.456*sqrLogPlab - 4.03*LogPlab;
1230 
1231  G4double XelPiP = 0.0 + 11.4*std::pow(Plab,-0.40) +
1232  0.079*sqrLogPlab - 0.0 *LogPlab;
1233 
1234  G4double XelPiN = 1.76 + 11.2*std::pow(Plab,-0.64) +
1235  0.043*sqrLogPlab - 0.0 *LogPlab;
1236 
1237  Xtotal = ( NumberOfTargetProtons * XtotPiP +
1238  NumberOfTargetNeutrons * XtotPiN );
1239 
1240  Xelastic = ( NumberOfTargetProtons * XelPiP +
1241  NumberOfTargetNeutrons * XelPiN );
1242  }
1243  else if( PDGcode == -211 ) //------Projectile is PionMinus -------
1244  {
1245  G4double XtotPiP = 33.0 + 14.0 *std::pow(Plab,-1.36) +
1246  0.456*sqrLogPlab - 4.03*LogPlab;
1247 
1248  G4double XtotPiN = 16.4 + 19.3 *std::pow(Plab,-0.42) +
1249  0.19 *sqrLogPlab - 0.0 *LogPlab;
1250 
1251  G4double XelPiP = 1.76 + 11.2*std::pow(Plab,-0.64) +
1252  0.043*sqrLogPlab - 0.0 *LogPlab;
1253 
1254  G4double XelPiN = 0.0 + 11.4*std::pow(Plab,-0.40) +
1255  0.079*sqrLogPlab - 0.0 *LogPlab;
1256 
1257  Xtotal = ( NumberOfTargetProtons * XtotPiP +
1258  NumberOfTargetNeutrons * XtotPiN );
1259 
1260  Xelastic = ( NumberOfTargetProtons * XelPiP +
1261  NumberOfTargetNeutrons * XelPiN );
1262  }
1263  else if( PDGcode == 111 ) //------Projectile is PionZero -------
1264  {
1265  G4double XtotPiP =(16.4 + 19.3 *std::pow(Plab,-0.42) +
1266  0.19 *sqrLogPlab - 0.0 *LogPlab + //Pi+
1267  33.0 + 14.0 *std::pow(Plab,-1.36) +
1268  0.456*sqrLogPlab - 4.03*LogPlab)/2; //Pi-
1269 
1270  G4double XtotPiN =(33.0 + 14.0 *std::pow(Plab,-1.36) +
1271  0.456*sqrLogPlab - 4.03*LogPlab + //Pi+
1272  16.4 + 19.3 *std::pow(Plab,-0.42) +
1273  0.19 *sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
1274 
1275  G4double XelPiP =( 0.0 + 11.4*std::pow(Plab,-0.40) +
1276  0.079*sqrLogPlab - 0.0 *LogPlab + //Pi+
1277  1.76 + 11.2*std::pow(Plab,-0.64) +
1278  0.043*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
1279 
1280  G4double XelPiN =( 1.76 + 11.2*std::pow(Plab,-0.64) +
1281  0.043*sqrLogPlab - 0.0 *LogPlab + //Pi+
1282  0.0 + 11.4*std::pow(Plab,-0.40) +
1283  0.079*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
1284 
1285  Xtotal = ( NumberOfTargetProtons * XtotPiP +
1286  NumberOfTargetNeutrons * XtotPiN );
1287 
1288  Xelastic = ( NumberOfTargetProtons * XelPiP +
1289  NumberOfTargetNeutrons * XelPiN );
1290  }
1291  else if( PDGcode == 321 ) //------Projectile is KaonPlus -------
1292  {
1293  G4double XtotKP = 18.1 + 0. *std::pow(Plab, 0. ) +
1294  0.26 *sqrLogPlab - 1.0 *LogPlab;
1295  G4double XtotKN = 18.7 + 0. *std::pow(Plab, 0. ) +
1296  0.21 *sqrLogPlab - 0.89*LogPlab;
1297 
1298  G4double XelKP = 5.0 + 8.1*std::pow(Plab,-1.8 ) +
1299  0.16 *sqrLogPlab - 1.3 *LogPlab;
1300 
1301  G4double XelKN = 7.3 + 0. *std::pow(Plab,-0. ) +
1302  0.29 *sqrLogPlab - 2.4 *LogPlab;
1303 
1304  Xtotal = ( NumberOfTargetProtons * XtotKP +
1305  NumberOfTargetNeutrons * XtotKN );
1306 
1307  Xelastic = ( NumberOfTargetProtons * XelKP +
1308  NumberOfTargetNeutrons * XelKN );
1309  }
1310  else if( PDGcode ==-321 ) //------Projectile is KaonMinus ------
1311  {
1312  G4double XtotKP = 32.1 + 0. *std::pow(Plab, 0. ) +
1313  0.66 *sqrLogPlab - 5.6 *LogPlab;
1314  G4double XtotKN = 25.2 + 0. *std::pow(Plab, 0. ) +
1315  0.38 *sqrLogPlab - 2.9 *LogPlab;
1316 
1317  G4double XelKP = 7.3 + 0. *std::pow(Plab,-0. ) +
1318  0.29 *sqrLogPlab - 2.4 *LogPlab;
1319 
1320  G4double XelKN = 5.0 + 8.1*std::pow(Plab,-1.8 ) +
1321  0.16 *sqrLogPlab - 1.3 *LogPlab;
1322 
1323  Xtotal = ( NumberOfTargetProtons * XtotKP +
1324  NumberOfTargetNeutrons * XtotKN );
1325 
1326  Xelastic = ( NumberOfTargetProtons * XelKP +
1327  NumberOfTargetNeutrons * XelKN );
1328  }
1329  else if( PDGcode == 311 ) //------Projectile is KaonZero ------
1330  {
1331  G4double XtotKP = ( 18.1 + 0. *std::pow(Plab, 0. ) +
1332  0.26 *sqrLogPlab - 1.0 *LogPlab + //K+
1333  32.1 + 0. *std::pow(Plab, 0. ) +
1334  0.66 *sqrLogPlab - 5.6 *LogPlab)/2; //K-
1335 
1336  G4double XtotKN = ( 18.7 + 0. *std::pow(Plab, 0. ) +
1337  0.21 *sqrLogPlab - 0.89*LogPlab + //K+
1338  25.2 + 0. *std::pow(Plab, 0. ) +
1339  0.38 *sqrLogPlab - 2.9 *LogPlab)/2; //K-
1340 
1341  G4double XelKP = ( 5.0 + 8.1*std::pow(Plab,-1.8 )
1342  + 0.16 *sqrLogPlab - 1.3 *LogPlab + //K+
1343  7.3 + 0. *std::pow(Plab,-0. ) +
1344  0.29 *sqrLogPlab - 2.4 *LogPlab)/2; //K-
1345 
1346  G4double XelKN = ( 7.3 + 0. *std::pow(Plab,-0. ) +
1347  0.29 *sqrLogPlab - 2.4 *LogPlab + //K+
1348  5.0 + 8.1*std::pow(Plab,-1.8 ) +
1349  0.16 *sqrLogPlab - 1.3 *LogPlab)/2; //K-
1350 
1351  Xtotal = ( NumberOfTargetProtons * XtotKP +
1352  NumberOfTargetNeutrons * XtotKN );
1353 
1354  Xelastic = ( NumberOfTargetProtons * XelKP +
1355  NumberOfTargetNeutrons * XelKN );
1356  }
1357  else //------Projectile is undefined, Nucleon assumed
1358  {
1359  G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) +
1360  0.522*sqrLogPlab - 4.51*LogPlab;
1361 
1362  G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) +
1363  0.513*sqrLogPlab - 4.27*LogPlab;
1364 
1365  G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) +
1366  0.169*sqrLogPlab - 1.85*LogPlab;
1367  G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) +
1368  0.169*sqrLogPlab - 1.85*LogPlab;
1369 
1370  Xtotal = ( NumberOfTargetProtons * XtotPP +
1371  NumberOfTargetNeutrons * XtotPN );
1372 
1373  Xelastic = ( NumberOfTargetProtons * XelPP +
1374  NumberOfTargetNeutrons * XelPN );
1375  }
1376  Xinelastic = Xtotal - Xelastic;
1377 
1378  if( Xinelastic < 0.) Xinelastic = 0.;
1379 
1380  return Xinelastic*= millibarn;
1381 }
1382 
1384 //
1385 //
1386 
1387 G4double
1389  const G4Element* anElement)
1390 {
1391  G4int At = G4lrint(anElement->GetN());
1392  G4double oneThird = 1.0/3.0;
1393  G4double cubicrAt = std::pow(G4double(At), oneThird);
1394 
1395  G4double R; // = fRadiusConst*cubicrAt;
1396  /*
1397  G4double tmp = std::pow( cubicrAt-1., 3.);
1398  tmp += At;
1399  tmp *= 0.5;
1400 
1401  if (At > 20.) // 20.
1402  {
1403  R = fRadiusConst*std::pow (tmp, oneThird);
1404  }
1405  else
1406  {
1407  R = fRadiusConst*cubicrAt;
1408  }
1409  */
1410 
1411  R = fRadiusConst*cubicrAt;
1412 
1413  G4double meanA = 21.;
1414 
1415  G4double tauA1 = 40.;
1416  G4double tauA2 = 10.;
1417  G4double tauA3 = 5.;
1418 
1419  G4double a1 = 0.85;
1420  G4double b1 = 1. - a1;
1421 
1422  G4double b2 = 0.3;
1423  G4double b3 = 4.;
1424 
1425  if (At > 20) // 20.
1426  {
1427  R *= ( a1 + b1*std::exp( -(At - meanA)/tauA1) );
1428  }
1429  else if (At > 3)
1430  {
1431  R *= ( 1.0 + b2*( 1. - std::exp( (At - meanA)/tauA2) ) );
1432  }
1433  else
1434  {
1435  R *= ( 1.0 + b3*( 1. - std::exp( (At - meanA)/tauA3) ) );
1436  }
1437  return R;
1438 
1439 }
1441 //
1442 //
1443 
1444 G4double
1446 {
1447  G4double oneThird = 1.0/3.0;
1448  G4double cubicrAt = std::pow(G4double(At), oneThird);
1449 
1450  G4double R; // = fRadiusConst*cubicrAt;
1451 
1452  /*
1453  G4double tmp = std::pow( cubicrAt-1., 3.);
1454  tmp += At;
1455  tmp *= 0.5;
1456 
1457  if (At > 20.)
1458  {
1459  R = fRadiusConst*std::pow (tmp, oneThird);
1460  }
1461  else
1462  {
1463  R = fRadiusConst*cubicrAt;
1464  }
1465  */
1466 
1467  R = fRadiusConst*cubicrAt;
1468 
1469  G4double meanA = 20.;
1470  G4double tauA = 20.;
1471 
1472  if (At > 20) // 20.
1473  {
1474  R *= ( 0.8 + 0.2*std::exp( -(G4double(At) - meanA)/tauA) );
1475  }
1476  else
1477  {
1478  R *= ( 1.0 + 0.1*( 1. - std::exp( (G4double(At) - meanA)/tauA) ) );
1479  }
1480 
1481  return R;
1482 }
1483 
1485 //
1486 //
1487 
1489  const G4double mt ,
1490  const G4double Plab )
1491 {
1492  G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
1493  G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt );
1494  // G4double Pcm = Plab * mt / Ecm;
1495  // G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp;
1496 
1497  return Ecm ; // KEcm;
1498 }
1499 
1501 //
1502 //
1503 
1505  const G4double mt ,
1506  const G4double Plab )
1507 {
1508  G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
1509  G4double sMand = mp*mp + mt*mt + 2*Elab*mt ;
1510 
1511  return sMand;
1512 }
1513 
1515 //
1516 //
1517 
1519 {
1520  outFile << "G4ComponentGGHadronNucleusXsc calculates total, inelastic and\n"
1521  << "elastic cross sections for hadron-nucleus cross sections using\n"
1522  << "the Glauber model with Gribov corrections. It is valid for all\n"
1523  << "targets except hydrogen, and for incident p, pbar, n, sigma-,\n"
1524  << "pi+, pi-, K+, K- and gammas with energies above 3 GeV. This is\n"
1525  << "a cross section component which is to be used to build a cross\n"
1526  << "data set.\n";
1527 }
1528 
1529 
1531 //
1532 // Correction arrays for GG <-> Bar changea at ~ 90 GeV
1533 
1535 
1536  1.0, 1.0, 1.42517e+00, // 1.118517e+00,
1537 1.082002e+00, 1.116171e+00, 1.078747e+00, 1.061315e+00,
1538 1.058205e+00, 1.082663e+00, 1.068500e+00, 1.076912e+00, 1.083475e+00, 1.079117e+00,
1539 1.071856e+00, 1.071990e+00, 1.073774e+00, 1.079356e+00, 1.081314e+00, 1.082056e+00,
1540 1.090772e+00, 1.096776e+00, 1.095828e+00, 1.097678e+00, 1.099157e+00, 1.103677e+00,
1541 1.105132e+00, 1.109806e+00, 1.110816e+00, 1.117378e+00, 1.115165e+00, 1.115710e+00,
1542 1.111855e+00, 1.110482e+00, 1.110112e+00, 1.106676e+00, 1.108706e+00, 1.105549e+00,
1543 1.106318e+00, 1.106242e+00, 1.107672e+00, 1.107342e+00, 1.108119e+00, 1.106655e+00,
1544 1.102588e+00, 1.096657e+00, 1.092920e+00, 1.086629e+00, 1.083592e+00, 1.076030e+00,
1545 1.083777e+00, 1.089460e+00, 1.086545e+00, 1.079924e+00, 1.082218e+00, 1.077798e+00,
1546 1.077062e+00, 1.072825e+00, 1.072241e+00, 1.072104e+00, 1.072490e+00, 1.069829e+00,
1547 1.070398e+00, 1.065458e+00, 1.064968e+00, 1.060524e+00, 1.060048e+00, 1.057620e+00,
1548 1.056428e+00, 1.055366e+00, 1.055017e+00, 1.052304e+00, 1.051767e+00, 1.049728e+00,
1549 1.048745e+00, 1.047399e+00, 1.045876e+00, 1.042972e+00, 1.041824e+00, 1.039993e+00,
1550 1.039021e+00, 1.036627e+00, 1.034176e+00, 1.032526e+00, 1.033633e+00, 1.036107e+00,
1551 1.037803e+00, 1.031266e+00, 1.032991e+00, 1.033284e+00, 1.035015e+00, 1.033945e+00,
1552 1.037075e+00, 1.034721e+00
1553 
1554 };
1555 
1557 
1558 1.0, 1.0, 1.167421e+00, 1.156250e+00, 1.205364e+00, 1.154225e+00, 1.120391e+00, // 6
1559 1.124632e+00, 1.129460e+00, 1.107863e+00, 1.102152e+00, 1.104593e+00, 1.100285e+00, // 12
1560 1.098450e+00, 1.092677e+00, 1.101124e+00, 1.106461e+00, 1.115049e+00, 1.123903e+00, // 18
1561 1.126661e+00, 1.131259e+00, 1.133949e+00, 1.134185e+00, 1.133767e+00, 1.132813e+00, // 24
1562 1.131515e+00, 1.144338e+00, // 1.130338e+00,
1563 1.134171e+00, 1.139206e+00, 1.148474e+00, // 1.141474e+00,
1564 1.142189e+00,
1565 1.140725e+00, 1.140100e+00, 1.139848e+00, 1.137674e+00, 1.138645e+00, 1.136339e+00,
1566 1.136439e+00, 1.135946e+00, 1.136431e+00, 1.135702e+00, 1.135703e+00, 1.134113e+00,
1567 1.131935e+00, 1.128381e+00, 1.126373e+00, 1.122453e+00, 1.120908e+00, 1.115953e+00,
1568 1.115947e+00, 1.114426e+00, 1.111749e+00, 1.106207e+00, 1.107494e+00, 1.103622e+00,
1569 1.102576e+00, 1.098816e+00, 1.097889e+00, 1.097306e+00, 1.097130e+00, 1.094578e+00,
1570 1.094552e+00, 1.090222e+00, 1.089358e+00, 1.085409e+00, 1.084560e+00, 1.082182e+00,
1571 1.080773e+00, 1.079464e+00, 1.078724e+00, 1.076121e+00, 1.075235e+00, 1.073159e+00,
1572 1.071920e+00, 1.070395e+00, 1.069503e+00, 1.067525e+00, 1.066919e+00, 1.065779e+00,
1573 1.065319e+00, 1.063730e+00, 1.062092e+00, 1.061085e+00, 1.059908e+00, 1.059815e+00,
1574 1.059109e+00, 1.051920e+00, 1.051258e+00, 1.049473e+00, 1.048823e+00, 1.045984e+00,
1575 1.046435e+00, 1.042614e+00
1576 
1577 };
1578 
1580 
1581 1.0, 1.0,
1582 1.118515e+00, 1.082000e+00, 1.116169e+00, 1.078745e+00, 1.061313e+00, 1.058203e+00,
1583 1.082661e+00, 1.068498e+00, 1.076910e+00, 1.083474e+00, 1.079115e+00, 1.071854e+00,
1584 1.071988e+00, 1.073772e+00, 1.079355e+00, 1.081312e+00, 1.082054e+00, 1.090770e+00,
1585 1.096774e+00, 1.095827e+00, 1.097677e+00, 1.099156e+00, 1.103676e+00, 1.105130e+00,
1586 1.109805e+00, 1.110814e+00, 1.117377e+00, 1.115163e+00, 1.115708e+00, 1.111853e+00,
1587 1.110480e+00, 1.110111e+00, 1.106674e+00, 1.108705e+00, 1.105548e+00, 1.106317e+00,
1588 1.106241e+00, 1.107671e+00, 1.107341e+00, 1.108118e+00, 1.106654e+00, 1.102586e+00,
1589 1.096655e+00, 1.092918e+00, 1.086628e+00, 1.083590e+00, 1.076028e+00, 1.083776e+00,
1590 1.089458e+00, 1.086543e+00, 1.079923e+00, 1.082216e+00, 1.077797e+00, 1.077061e+00,
1591 1.072824e+00, 1.072239e+00, 1.072103e+00, 1.072488e+00, 1.069828e+00, 1.070396e+00,
1592 1.065456e+00, 1.064966e+00, 1.060523e+00, 1.060047e+00, 1.057618e+00, 1.056427e+00,
1593 1.055365e+00, 1.055016e+00, 1.052303e+00, 1.051766e+00, 1.049727e+00, 1.048743e+00,
1594 1.047397e+00, 1.045875e+00, 1.042971e+00, 1.041823e+00, 1.039992e+00, 1.039019e+00,
1595 1.036626e+00, 1.034175e+00, 1.032525e+00, 1.033632e+00, 1.036106e+00, 1.037802e+00,
1596 1.031265e+00, 1.032990e+00, 1.033283e+00, 1.035014e+00, 1.033944e+00, 1.037074e+00,
1597 1.034720e+00
1598 
1599 };
1600 
1602 
1603 1.0, 1.0,
1604 1.147419e+00, // 1.167419e+00,
1605 1.156248e+00, 1.205362e+00, 1.154224e+00, 1.120390e+00, 1.124630e+00, // 7
1606 1.129459e+00, 1.107861e+00, 1.102151e+00, 1.104591e+00, 1.100284e+00, 1.098449e+00, // 13
1607 1.092675e+00, 1.101122e+00, 1.106460e+00, 1.115048e+00, 1.123902e+00, 1.126659e+00, // 19
1608 1.131258e+00, 1.133948e+00, 1.134183e+00, 1.133766e+00, 1.132812e+00, 1.131514e+00, // 25
1609 1.140337e+00, // 1.130337e+00,
1610 
1611 1.134170e+00, 1.139205e+00, 1.151472e+00, // 1.141472e+00,
1612 1.142188e+00, 1.140724e+00,
1613 1.140099e+00, 1.139847e+00, 1.137672e+00, 1.138644e+00, 1.136338e+00, 1.136438e+00,
1614 1.135945e+00, 1.136429e+00, 1.135701e+00, 1.135702e+00, 1.134112e+00, 1.131934e+00,
1615 1.128380e+00, 1.126371e+00, 1.122452e+00, 1.120907e+00, 1.115952e+00, 1.115946e+00,
1616 1.114425e+00, 1.111748e+00, 1.106205e+00, 1.107493e+00, 1.103621e+00, 1.102575e+00,
1617 1.098815e+00, 1.097888e+00, 1.097305e+00, 1.097129e+00, 1.094577e+00, 1.094551e+00,
1618 1.090221e+00, 1.089357e+00, 1.085408e+00, 1.084559e+00, 1.082181e+00, 1.080772e+00,
1619 1.079463e+00, 1.078723e+00, 1.076120e+00, 1.075234e+00, 1.073158e+00, 1.071919e+00,
1620 1.070394e+00, 1.069502e+00, 1.067524e+00, 1.066918e+00, 1.065778e+00, 1.065318e+00,
1621 1.063729e+00, 1.062091e+00, 1.061084e+00, 1.059907e+00, 1.059814e+00, 1.059108e+00,
1622 1.051919e+00, 1.051257e+00, 1.049472e+00, 1.048822e+00, 1.045983e+00, 1.046434e+00,
1623 1.042613e+00
1624 
1625 };
1626 
1627 
1629 
1630 1.0, 1.0,
1631 1.075927e+00, 1.074407e+00, 1.126098e+00, 1.100127e+00, 1.089742e+00, 1.083536e+00,
1632 1.089988e+00, 1.103566e+00, 1.096922e+00, 1.126573e+00, 1.132734e+00, 1.136512e+00,
1633 1.136629e+00, 1.133086e+00, 1.132428e+00, 1.129299e+00, 1.125622e+00, 1.126992e+00,
1634 1.127840e+00, 1.162670e+00, 1.160392e+00, 1.157864e+00, 1.157227e+00, 1.154627e+00,
1635 1.192555e+00, 1.197243e+00, 1.197911e+00, 1.200326e+00, 1.220053e+00, 1.215019e+00,
1636 1.211703e+00, 1.209080e+00, 1.204248e+00, 1.203328e+00, 1.198671e+00, 1.196840e+00,
1637 1.194392e+00, 1.193037e+00, 1.190408e+00, 1.188583e+00, 1.206127e+00, 1.210028e+00,
1638 1.206434e+00, 1.204456e+00, 1.200547e+00, 1.199058e+00, 1.200174e+00, 1.200276e+00,
1639 1.198912e+00, 1.213048e+00, 1.207160e+00, 1.208020e+00, 1.203814e+00, 1.202380e+00,
1640 1.198306e+00, 1.197002e+00, 1.196027e+00, 1.195449e+00, 1.192563e+00, 1.192135e+00,
1641 1.187556e+00, 1.186308e+00, 1.182124e+00, 1.180900e+00, 1.178224e+00, 1.176471e+00,
1642 1.174811e+00, 1.173702e+00, 1.170827e+00, 1.169581e+00, 1.167205e+00, 1.165626e+00,
1643 1.180244e+00, 1.177626e+00, 1.175121e+00, 1.173903e+00, 1.172192e+00, 1.171128e+00,
1644 1.168997e+00, 1.166826e+00, 1.164130e+00, 1.165412e+00, 1.165504e+00, 1.165020e+00,
1645 1.158462e+00, 1.158014e+00, 1.156519e+00, 1.156081e+00, 1.153602e+00, 1.154190e+00,
1646 1.152974e+00
1647 
1648 };
1649 
1651 
1652 1.0, 1.0,
1653 1.140246e+00, 1.097872e+00, 1.104301e+00, 1.068722e+00, 1.056495e+00, 1.062622e+00, // 7
1654 1.047987e+00, 1.037032e+00, 1.035686e+00, 1.042870e+00, 1.052222e+00, 1.075100e+00, // 13
1655 1.084480e+00, 1.078286e+00, 1.081488e+00, 1.089713e+00, 1.099105e+00, 1.098003e+00, // 19
1656 1.102175e+00, 1.117707e+00, 1.121734e+00, 1.125229e+00, 1.126457e+00, 1.128905e+00, // 25
1657 1.163312e+00, 1.126263e+00, 1.126459e+00, 1.135191e+00, 1.116986e+00, 1.117184e+00, // 31
1658 1.117037e+00, 1.116777e+00, 1.115858e+00, 1.115745e+00, 1.114489e+00, 1.113993e+00, // 37
1659 1.113226e+00, 1.112818e+00, 1.111890e+00, 1.111238e+00, 1.111209e+00, 1.111775e+00, // 43
1660 1.110256e+00, 1.109414e+00, 1.107647e+00, 1.106980e+00, 1.106096e+00, 1.107331e+00, // 49
1661 1.107849e+00, 1.106407e+00, 1.103426e+00, 1.103896e+00, 1.101756e+00, 1.101031e+00, // 55
1662 1.098915e+00, 1.098260e+00, 1.097768e+00, 1.097487e+00, 1.095964e+00, 1.095773e+00, // 61
1663 1.093348e+00, 1.092687e+00, 1.090465e+00, 1.089821e+00, 1.088394e+00, 1.087462e+00, // 67
1664 1.086571e+00, 1.085997e+00, 1.084451e+00, 1.083798e+00, 1.082513e+00, 1.081670e+00, // 73
1665 1.080735e+00, 1.075659e+00, 1.074341e+00, 1.073689e+00, 1.072787e+00, 1.072237e+00, // 79
1666 1.071107e+00, 1.069955e+00, 1.074856e+00, 1.065873e+00, 1.065938e+00, 1.065694e+00,
1667 1.062192e+00, 1.061967e+00, 1.061180e+00, 1.060960e+00, 1.059646e+00, 1.059975e+00,
1668 1.059658e+00
1669 
1670 };
1671 
1672 
1674 
1675 1.0, 1.0,
1676 1.3956e+00, 1.077959e+00, 1.129145e+00, 1.102088e+00, 1.089765e+00, 1.083542e+00, // 7
1677 1.089995e+00, 1.104895e+00, 1.097154e+00, 1.127663e+00, 1.133063e+00, 1.137425e+00, // 13
1678 1.136724e+00, 1.133859e+00, 1.132498e+00, 1.130276e+00, 1.127896e+00, 1.127656e+00, // 19
1679 1.127905e+00, 1.164210e+00, 1.162259e+00, 1.160075e+00, 1.158978e+00, 1.156649e+00, // 25
1680 1.194157e+00, 1.199177e+00, 1.198983e+00, 1.202325e+00, 1.221967e+00, 1.217548e+00,
1681 1.214389e+00, 1.211760e+00, 1.207335e+00, 1.206081e+00, 1.201766e+00, 1.199779e+00,
1682 1.197283e+00, 1.195706e+00, 1.193071e+00, 1.191115e+00, 1.208838e+00, 1.212681e+00,
1683 1.209235e+00, 1.207163e+00, 1.203451e+00, 1.201807e+00, 1.203283e+00, 1.203388e+00,
1684 1.202244e+00, 1.216509e+00, 1.211066e+00, 1.211504e+00, 1.207539e+00, 1.205991e+00,
1685 1.202143e+00, 1.200724e+00, 1.199595e+00, 1.198815e+00, 1.196025e+00, 1.195390e+00,
1686 1.191137e+00, 1.189791e+00, 1.185888e+00, 1.184575e+00, 1.181996e+00, 1.180229e+00,
1687 1.178545e+00, 1.177355e+00, 1.174616e+00, 1.173312e+00, 1.171016e+00, 1.169424e+00,
1688 1.184120e+00, 1.181478e+00, 1.179085e+00, 1.177817e+00, 1.176124e+00, 1.175003e+00,
1689 1.172947e+00, 1.170858e+00, 1.168170e+00, 1.169397e+00, 1.169304e+00, 1.168706e+00,
1690 1.162774e+00, 1.162217e+00, 1.160740e+00, 1.160196e+00, 1.157857e+00, 1.158220e+00,
1691 1.157267e+00
1692 };
1693 
1694 
1696 
1697 1.0, 1.0,
1698 1.463e+00, 1.100898e+00, 1.106773e+00, 1.070289e+00, 1.040514e+00, 1.062628e+00, // 7
1699 1.047992e+00, 1.038041e+00, 1.035862e+00, 1.043679e+00, 1.052466e+00, 1.065780e+00, // 13
1700 1.070551e+00, 1.078869e+00, 1.081541e+00, 1.090455e+00, 1.100847e+00, 1.098511e+00, // 19
1701 1.102226e+00, 1.118865e+00, 1.123143e+00, 1.126904e+00, 1.127785e+00, 1.130444e+00, // 25
1702 1.148502e+00, 1.127678e+00, 1.127244e+00, 1.123634e+00, 1.118347e+00, 1.118988e+00,
1703 1.118957e+00, 1.118696e+00, 1.118074e+00, 1.117722e+00, 1.116717e+00, 1.116111e+00,
1704 1.115311e+00, 1.114745e+00, 1.113814e+00, 1.113069e+00, 1.113141e+00, 1.113660e+00,
1705 1.112249e+00, 1.111343e+00, 1.109718e+00, 1.108942e+00, 1.108310e+00, 1.109549e+00,
1706 1.110227e+00, 1.108846e+00, 1.106183e+00, 1.106354e+00, 1.104388e+00, 1.103583e+00,
1707 1.101632e+00, 1.100896e+00, 1.100296e+00, 1.099873e+00, 1.098420e+00, 1.098082e+00,
1708 1.095892e+00, 1.095162e+00, 1.093144e+00, 1.092438e+00, 1.091083e+00, 1.090142e+00,
1709 1.089236e+00, 1.088604e+00, 1.087159e+00, 1.086465e+00, 1.085239e+00, 1.084388e+00,
1710 1.083473e+00, 1.078373e+00, 1.077136e+00, 1.076450e+00, 1.075561e+00, 1.074973e+00,
1711 1.073898e+00, 1.072806e+00, 1.067706e+00, 1.068684e+00, 1.068618e+00, 1.068294e+00,
1712 1.065241e+00, 1.064939e+00, 1.064166e+00, 1.063872e+00, 1.062659e+00, 1.062828e+00,
1713 1.062699e+00
1714 
1715 };
1716 
1717 
1718 //
1719 //
G4double GetElasticHadronNucleonXsc()
G4double GetRatioQE(const G4DynamicParticle *, G4int At, G4int Zt)
G4double GetNucleusRadius(const G4DynamicParticle *, const G4Element *)
G4double GetHadronNucleonXscPDG(const G4DynamicParticle *, const G4Element *)
G4double GetKmNeutronTotXscVector(G4double logEnergy)
static const double MeV
Definition: G4SIunits.hh:193
virtual G4double GetProductionElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A)
G4double GetKpProtonTotXscVector(G4double logEnergy)
static G4AntiOmegaMinus * AntiOmegaMinus()
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
G4double GetN() const
Definition: G4Element.hh:134
static const G4double a1
G4double CalcMandelstamS(const G4double, const G4double, const G4double)
static G4OmegaMinus * OmegaMinus()
const G4double pi
G4double GetZ() const
Definition: G4Element.hh:131
static G4KaonZeroLong * KaonZeroLong()
G4double GetRatioSD(const G4DynamicParticle *, G4int At, G4int Zt)
static const G4double fNeutronBarCorrectionIn[93]
static const G4double fPionMinusBarCorrectionTot[93]
G4ParticleDefinition * GetDefinition() const
static G4AntiSigmaPlus * AntiSigmaPlus()
int G4int
Definition: G4Types.hh:78
G4double GetIsoCrossSection(const G4DynamicParticle *, G4int Z, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
static G4SigmaZero * SigmaZero()
Definition: G4SigmaZero.cc:102
G4double GetHNinelasticXscVU(const G4DynamicParticle *, G4int At, G4int Zt)
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
G4double GetHadronNucleonXscNS(const G4DynamicParticle *, const G4ParticleDefinition *)
virtual G4double GetInelasticIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)
static G4AntiSigmaMinus * AntiSigmaMinus()
static G4XiZero * XiZero()
Definition: G4XiZero.cc:106
G4double GetHadronNucleonXscNS(const G4DynamicParticle *, const G4Element *)
static const G4double b3
G4double GetKaonNucleonXscGG(const G4DynamicParticle *, const G4ParticleDefinition *)
static G4KaonZeroShort * KaonZeroShort()
static G4AntiProton * AntiProton()
Definition: G4AntiProton.cc:93
G4double GetMass() const
bool G4bool
Definition: G4Types.hh:79
static G4XiMinus * XiMinus()
Definition: G4XiMinus.cc:106
static G4AntiXiMinus * AntiXiMinus()
static G4Triton * Triton()
Definition: G4Triton.cc:95
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static const double GeV
Definition: G4SIunits.hh:196
static const G4double b2
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
virtual G4double GetInelasticElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A)
G4double GetHadronNucleonXsc(const G4DynamicParticle *, const G4Element *)
static const G4double A[nN]
static G4PionZero * PionZero()
Definition: G4PionZero.cc:108
G4double GetHNinelasticXsc(const G4DynamicParticle *, const G4Element *)
static G4Deuteron * Deuteron()
Definition: G4Deuteron.cc:94
G4double GetParticleBarCorIn(const G4ParticleDefinition *theParticle, G4int Z)
static G4SigmaMinus * SigmaMinus()
virtual void CrossSectionDescription(std::ostream &) const
static const G4double fPionPlusBarCorrectionTot[93]
static G4ParticleTable * GetParticleTable()
static const G4double fProtonBarCorrectionTot[93]
static G4AntiLambda * AntiLambda()
int G4lrint(double ad)
Definition: templates.hh:163
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:98
static G4AntiSigmaZero * AntiSigmaZero()
G4double GetKmProtonTotXscVector(G4double logEnergy)
virtual G4double GetTotalIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)
virtual G4double GetElasticIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)
static const double millibarn
Definition: G4SIunits.hh:96
static const G4double b1
static G4AntiXiZero * AntiXiZero()
G4double CalculateEcmValue(const G4double, const G4double, const G4double)
static const G4double fPionPlusBarCorrectionIn[93]
G4bool IsIsoApplicable(const G4DynamicParticle *aDP, G4int Z, G4int A, const G4Element *elm=0, const G4Material *mat=0)
static G4Alpha * Alpha()
Definition: G4Alpha.cc:89
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:108
static G4Lambda * Lambda()
Definition: G4Lambda.cc:108
double G4double
Definition: G4Types.hh:76
virtual G4double GetTotalElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A)
static G4KaonPlus * KaonPlus()
Definition: G4KaonPlus.cc:113
static const G4double fProtonBarCorrectionIn[93]
virtual G4double GetElasticElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A)
static const G4double fPionMinusBarCorrectionIn[93]
G4double GetKaonNucleonXscVector(const G4DynamicParticle *, G4int At, G4int Zt)
G4ThreeVector G4ParticleMomentum
static G4He3 * He3()
Definition: G4He3.cc:94
const G4double oneThird
virtual G4double ComputeQuasiElasticRatio(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)
static const double fermi
Definition: G4SIunits.hh:93
G4double GetParticleBarCorTot(const G4ParticleDefinition *theParticle, G4int Z)
static G4AntiNeutron * AntiNeutron()
static const G4double fNeutronBarCorrectionTot[93]
G4double GetInelasticHadronNucleonXsc()
G4ThreeVector GetMomentum() const
G4double GetKpNeutronTotXscVector(G4double logEnergy)
virtual G4double GetProductionIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)