Geant4  10.01.p03
G4LEpp.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 
27  // G4 Low energy model: n-n or p-p scattering
28  // F.W. Jones, L.G. Greeniaus, H.P. Wellisch
29 
30 // FWJ 27-AUG-2010: extended Coulomb-suppressed data to 5 GeV
31 
32 #include "G4LEpp.hh"
33 #include "G4PhysicalConstants.hh"
34 #include "G4SystemOfUnits.hh"
35 #include "Randomize.hh"
36 #include "G4ios.hh"
37 
38 // Initialization of static data arrays:
39 #include "G4LEppData.hh"
40 
42 {
43  SetMinEnergy(0.);
44  SetMaxEnergy(5.*GeV);
45 }
46 
48 {}
49 
51 G4LEpp::ApplyYourself(const G4HadProjectile& aTrack, G4Nucleus& targetNucleus)
52 {
54  const G4HadProjectile* aParticle = &aTrack;
55 
56  G4double P = aParticle->GetTotalMomentum();
57  G4double Px = aParticle->Get4Momentum().x();
58  G4double Py = aParticle->Get4Momentum().y();
59  G4double Pz = aParticle->Get4Momentum().z();
60  G4double E = aParticle->GetTotalEnergy();
61  G4ThreeVector theInitial = aParticle->Get4Momentum().vect().unit();
62 
63  if (verboseLevel > 1) {
64  G4double ek = aParticle->GetKineticEnergy();
65  G4double E0 = aParticle->GetDefinition()->GetPDGMass();
66  G4double Q = aParticle->GetDefinition()->GetPDGCharge();
67  G4int A = targetNucleus.GetA_asInt();
68  G4int Z = targetNucleus.GetZ_asInt();
69  G4cout << "G4LEpp:ApplyYourself: incident particle: "
70  << aParticle->GetDefinition()->GetParticleName() << G4endl;
71  G4cout << "P = " << P/GeV << " GeV/c"
72  << ", Px = " << Px/GeV << " GeV/c"
73  << ", Py = " << Py/GeV << " GeV/c"
74  << ", Pz = " << Pz/GeV << " GeV/c" << G4endl;
75  G4cout << "E = " << E/GeV << " GeV"
76  << ", kinetic energy = " << ek/GeV << " GeV"
77  << ", mass = " << E0/GeV << " GeV"
78  << ", charge = " << Q << G4endl;
79  G4cout << "G4LEpp:ApplyYourself: material:" << G4endl;
80  G4cout << "A = " << A
81  << ", Z = " << Z
82  << ", atomic mass "
83  << G4Proton::Proton()->GetPDGMass()/GeV << "GeV"
84  << G4endl;
85  //
86  // GHEISHA ADD operation to get total energy, mass, charge
87  //
88  E += proton_mass_c2;
89  G4double E02 = E*E - P*P;
90  E0 = std::sqrt(std::fabs(E02));
91  if (E02 < 0)E0 *= -1;
92  Q += Z;
93  G4cout << "G4LEpp:ApplyYourself: total:" << G4endl;
94  G4cout << "E = " << E/GeV << " GeV"
95  << ", mass = " << E0/GeV << " GeV"
96  << ", charge = " << Q << G4endl;
97  }
98  G4double t = SampleInvariantT(aParticle->GetDefinition(), P, 0, 0);
99  G4double cost = 1.0 - 2*t/(P*P);
100  if(cost > 1.0) { cost = 1.0; }
101  if(cost <-1.0) { cost =-1.0; }
102  G4double sint = std::sqrt((1.0 - cost)*(1.0 + cost));
103  G4double phi = twopi*G4UniformRand();
104  // Get the target particle
105  G4DynamicParticle* targetParticle = targetNucleus.ReturnTargetParticle();
106 
107  G4double E1 = aParticle->GetTotalEnergy();
108  G4double M1 = aParticle->GetDefinition()->GetPDGMass();
109  G4double E2 = targetParticle->GetTotalEnergy();
110  G4double M2 = targetParticle->GetDefinition()->GetPDGMass();
111  G4double totalEnergy = E1 + E2;
112  G4double pseudoMass = std::sqrt(totalEnergy*totalEnergy - P*P);
113 
114  // Transform into centre of mass system
115 
116  G4double px = (M2/pseudoMass)*Px;
117  G4double py = (M2/pseudoMass)*Py;
118  G4double pz = (M2/pseudoMass)*Pz;
119  G4double p = std::sqrt(px*px + py*py + pz*pz);
120 
121  if (verboseLevel > 1) {
122  G4cout << " E1, M1 (GeV) " << E1/GeV << " " << M1/GeV << G4endl;
123  G4cout << " E2, M2 (GeV) " << E2/GeV << " " << M2/GeV << G4endl;
124  G4cout << " particle 1 momentum in CM " << px/GeV
125  << " " << py/GeV << " "
126  << pz/GeV << " " << p/GeV << G4endl;
127  }
128 
129  // First scatter w.r.t. Z axis
130  G4double pxnew = p*sint*std::cos(phi);
131  G4double pynew = p*sint*std::sin(phi);
132  G4double pznew = p*cost;
133 
134  // Rotate according to the direction of the incident particle
135  if (px*px + py*py > 0) {
136  G4double ph, cosp, sinp;
137  cost = pz/p;
138  sint = (std::sqrt((1-cost)*(1+cost)) + std::sqrt(px*px+py*py)/p)/2;
139  py < 0 ? ph = 3*halfpi : ph = halfpi;
140  if (std::fabs(px) > 0.000001*GeV) ph = std::atan2(py,px);
141  cosp = std::cos(ph);
142  sinp = std::sin(ph);
143  px = (cost*cosp*pxnew - sinp*pynew + sint*cosp*pznew);
144  py = (cost*sinp*pxnew + cosp*pynew + sint*sinp*pznew);
145  pz = (-sint*pxnew + cost*pznew);
146  }
147  else {
148  px = pxnew;
149  py = pynew;
150  pz = pznew;
151  }
152 
153  if (verboseLevel > 1) {
154  G4cout << " AFTER SCATTER..." << G4endl;
155  G4cout << " particle 1 momentum in CM " << px/GeV << " " << py/GeV << " "
156  << pz/GeV << " " << p/GeV << G4endl;
157  }
158 
159  // Transform to lab system
160 
161  G4double E1pM2 = E1 + M2;
162  G4double betaCM = P/E1pM2;
163  G4double betaCMx = Px/E1pM2;
164  G4double betaCMy = Py/E1pM2;
165  G4double betaCMz = Pz/E1pM2;
166  G4double gammaCM = E1pM2/std::sqrt(E1pM2*E1pM2 - P*P);
167 
168  if (verboseLevel > 1) {
169  G4cout << " betaCM " << betaCMx << " " << betaCMy << " "
170  << betaCMz << " " << betaCM << G4endl;
171  G4cout << " gammaCM " << gammaCM << G4endl;
172  }
173 
174  // Now following GLOREN...
175 
176  G4double BETA[5], PA[5], PB[5];
177  BETA[1] = -betaCMx;
178  BETA[2] = -betaCMy;
179  BETA[3] = -betaCMz;
180  BETA[4] = gammaCM;
181 
182  //The incident particle...
183 
184  PA[1] = px;
185  PA[2] = py;
186  PA[3] = pz;
187  PA[4] = std::sqrt(M1*M1 + p*p);
188 
189  G4double BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
190  G4double BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
191 
192  PB[1] = PA[1] + BPGAM * BETA[1];
193  PB[2] = PA[2] + BPGAM * BETA[2];
194  PB[3] = PA[3] + BPGAM * BETA[3];
195  PB[4] = (PA[4] - BETPA) * BETA[4];
196 
198  newP->SetDefinition(aParticle->GetDefinition());
199  newP->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3]));
200 
201  //The target particle...
202 
203  PA[1] = -px;
204  PA[2] = -py;
205  PA[3] = -pz;
206  PA[4] = std::sqrt(M2*M2 + p*p);
207 
208  BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
209  BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
210 
211  PB[1] = PA[1] + BPGAM * BETA[1];
212  PB[2] = PA[2] + BPGAM * BETA[2];
213  PB[3] = PA[3] + BPGAM * BETA[3];
214  PB[4] = (PA[4] - BETPA) * BETA[4];
215 
216  targetParticle->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3]));
217 
218  if (verboseLevel > 1) {
219  G4cout << " particle 1 momentum in LAB "
220  << newP->GetMomentum()/GeV
221  << " " << newP->GetTotalMomentum()/GeV << G4endl;
222  G4cout << " particle 2 momentum in LAB "
223  << targetParticle->GetMomentum()/GeV
224  << " " << targetParticle->GetTotalMomentum()/GeV << G4endl;
225  G4cout << " TOTAL momentum in LAB "
226  << (newP->GetMomentum()+targetParticle->GetMomentum())/GeV
227  << " "
228  << (newP->GetMomentum()+targetParticle->GetMomentum()).mag()/GeV
229  << G4endl;
230  }
231 
234  delete newP;
235 
236  // Recoil particle
237  theParticleChange.AddSecondary(targetParticle);
238  return &theParticleChange;
239 }
240 
242 //
243 // sample momentum transfer using Lab. momentum
244 
246  G4double plab, G4int , G4int )
247 {
248  G4double nMass = p->GetPDGMass(); // 939.565346*MeV;
249  G4double ek = std::sqrt(plab*plab+nMass*nMass) - nMass;
250 
251  // Find energy bin
252 
253  G4int je1 = 0;
254  G4int je2 = NENERGY - 1;
255  ek /= GeV;
256 
257  do
258  {
259  G4int midBin = (je1 + je2)/2;
260 
261  if (ek < elab[midBin]) je2 = midBin;
262  else je1 = midBin;
263  }
264  while (je2 - je1 > 1);
265 
266  G4double delab = elab[je2] - elab[je1];
267 
268  // Sample the angle
269 
270  G4double sample = G4UniformRand();
271  G4int ke1 = 0;
272  G4int ke2 = NANGLE - 1;
273  G4double dsig, b, rc;
274 
275  dsig = Sig[je2][0] - Sig[je1][0];
276  rc = dsig/delab;
277  b = Sig[je1][0] - rc*elab[je1];
278 
279  G4double sigint1 = rc*ek + b;
280  G4double sigint2 = 0.;
281 
282  do
283  {
284  G4int midBin = (ke1 + ke2)/2;
285  dsig = Sig[je2][midBin] - Sig[je1][midBin];
286  rc = dsig/delab;
287  b = Sig[je1][midBin] - rc*elab[je1];
288  G4double sigint = rc*ek + b;
289 
290  if (sample < sigint)
291  {
292  ke2 = midBin;
293  sigint2 = sigint;
294  }
295  else
296  {
297  ke1 = midBin;
298  sigint1 = sigint;
299  }
300  }
301  while (ke2 - ke1 > 1);
302 
303  dsig = sigint2 - sigint1;
304  rc = 1./dsig;
305  b = ke1 - rc*sigint1;
306 
307  G4double kint = rc*sample + b;
308  G4double theta = (0.5 + kint)*pi/180.;
309  G4double t = 0.5*plab*plab*(1 - std::cos(theta));
310 
311  return t;
312 }
313 // end of file
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
static const G4float Sig[NENERGY][NANGLE]
Definition: G4LEpp.hh:75
void SetMomentum(const G4ThreeVector &momentum)
G4double GetKineticEnergy() const
static const G4float elab[NENERGY]
Definition: G4LEpp.hh:76
G4LEpp()
Definition: G4LEpp.cc:41
CLHEP::Hep3Vector G4ThreeVector
G4double GetTotalEnergy() const
virtual ~G4LEpp()
Definition: G4LEpp.cc:47
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
Definition: G4LEpp.cc:51
const G4double pi
G4ParticleDefinition * GetDefinition() const
int G4int
Definition: G4Types.hh:78
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
const G4String & GetParticleName() const
G4double GetTotalMomentum() const
void SetMinEnergy(G4double anEnergy)
#define G4UniformRand()
Definition: Randomize.hh:93
G4GLOB_DLL std::ostream G4cout
const G4ParticleDefinition * GetDefinition() const
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
static G4Proton * Proton()
Definition: G4Proton.cc:93
static const double GeV
Definition: G4SIunits.hh:196
static const G4double A[nN]
const G4LorentzVector & Get4Momentum() const
void SetEnergyChange(G4double anEnergy)
G4double GetPDGMass() const
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
void SetMaxEnergy(const G4double anEnergy)
#define G4endl
Definition: G4ios.hh:61
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
double G4double
Definition: G4Types.hh:76
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
G4double SampleInvariantT(const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
Definition: G4LEpp.cc:245
G4double GetPDGCharge() const
void SetMomentumChange(const G4ThreeVector &aV)
G4ThreeVector GetMomentum() const
G4double GetTotalMomentum() const
G4double GetTotalEnergy() const