Geant4  10.01.p03
G4MuElecInelasticModel.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // G4MuElecInelasticModel.hh, 2011/08/29 A.Valentin, M. Raine
28 //
29 // Based on the following publications
30 //
31 // - Inelastic cross-sections of low energy electrons in silicon
32 // for the simulation of heavy ion tracks with theGeant4-DNA toolkit,
33 // NSS Conf. Record 2010, pp. 80-85
34 // - Geant4 physics processes for microdosimetry simulation:
35 // very low energy electromagnetic models for electrons in Si,
36 // NIM B, vol. 288, pp. 66-73, 2012.
37 // - Geant4 physics processes for microdosimetry simulation:
38 // very low energy electromagnetic models for protons and
39 // heavy ions in Si, NIM B, vol. 287, pp. 124-129, 2012.
40 //
41 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
42 
43 #ifndef G4MuElecInelasticModel_h
44 #define G4MuElecInelasticModel_h 1
45 
46 
47 #include "globals.hh"
48 #include "G4VEmModel.hh"
50 #include "G4ProductionCutsTable.hh"
51 
53 #include "G4Electron.hh"
54 #include "G4Proton.hh"
55 #include "G4GenericIon.hh"
56 #include "G4ParticleDefinition.hh"
57 
58 #include "G4LogLogInterpolation.hh"
59 
60 #include "G4MuElecSiStructure.hh"
61 #include "G4VAtomDeexcitation.hh"
62 #include "G4NistManager.hh"
63 
65 {
66 
67 public:
68 
70  const G4String& nam = "MuElecInelasticModel");
71 
72  virtual ~G4MuElecInelasticModel();
73 
74  virtual void Initialise(const G4ParticleDefinition*, const G4DataVector&);
75 
76  virtual G4double CrossSectionPerVolume( const G4Material* material,
77  const G4ParticleDefinition* p,
78  G4double ekin,
79  G4double emin,
80  G4double emax);
81 
82  virtual void SampleSecondaries(std::vector<G4DynamicParticle*>*,
83  const G4MaterialCutsCouple*,
84  const G4DynamicParticle*,
85  G4double tmin,
86  G4double maxEnergy);
87 
88  double DifferentialCrossSection(G4ParticleDefinition * aParticleDefinition, G4double k, G4double energyTransfer, G4int shell);
89 
90 protected:
91 
93 
94 private:
95 
96  //deexcitation manager to produce fluo photns and e-
98 
100 
101  std::map<G4String,G4double,std::less<G4String> > lowEnergyLimit;
102  std::map<G4String,G4double,std::less<G4String> > highEnergyLimit;
103 
106 
107  // Cross section
108 
109  typedef std::map<G4String,G4String,std::less<G4String> > MapFile;
110  MapFile tableFile;
111 
112  typedef std::map<G4String,G4MuElecCrossSectionDataSet*,std::less<G4String> > MapData;
113  MapData tableData;
114 
115  // Final state
116 
118 
119  G4double RandomizeEjectedElectronEnergy(G4ParticleDefinition * aParticleDefinition, G4double incomingParticleEnergy, G4int shell) ;
120 
121  void RandomizeEjectedElectronDirection(G4ParticleDefinition * aParticleDefinition, G4double incomingParticleEnergy, G4double
122  outgoingParticleEnergy, G4double & cosTheta, G4double & phi );
123 
125 
127  G4double e12,
128  G4double e21,
129  G4double e22,
130  G4double x11,
131  G4double x12,
132  G4double x21,
133  G4double x22,
134  G4double t1,
135  G4double t2,
136  G4double t,
137  G4double e);
138 
139  typedef std::map<double, std::map<double, double> > TriDimensionMap;
140  TriDimensionMap eDiffCrossSectionData[7];
141  TriDimensionMap pDiffCrossSectionData[7];
142  std::vector<double> eTdummyVec;
143  std::vector<double> pTdummyVec;
144 
145  typedef std::map<double, std::vector<double> > VecMap;
146  VecMap eVecm;
147  VecMap pVecm;
148 
149  // Partial cross section
150 
151  G4int RandomSelect(G4double energy,const G4String& particle );
152 
153  //
154 
157 
158 };
159 
160 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
161 
162 #endif
G4MuElecInelasticModel & operator=(const G4MuElecInelasticModel &right)
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
G4double LogLogInterpolate(G4double e1, G4double e2, G4double e, G4double xs1, G4double xs2)
G4ParticleChangeForGamma * fParticleChangeForGamma
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
G4double RandomizeEjectedElectronEnergy(G4ParticleDefinition *aParticleDefinition, G4double incomingParticleEnergy, G4int shell)
static const G4double e2
std::vector< double > pTdummyVec
G4double QuadInterpolator(G4double e11, G4double e12, G4double e21, G4double e22, G4double x11, G4double x12, G4double x21, G4double x22, G4double t1, G4double t2, G4double t, G4double e)
std::map< double, std::vector< double > > VecMap
int G4int
Definition: G4Types.hh:78
TriDimensionMap eDiffCrossSectionData[7]
TriDimensionMap pDiffCrossSectionData[7]
bool G4bool
Definition: G4Types.hh:79
G4MuElecSiStructure SiStructure
std::map< G4String, G4double, std::less< G4String > > highEnergyLimit
static const G4double e1
double DifferentialCrossSection(G4ParticleDefinition *aParticleDefinition, G4double k, G4double energyTransfer, G4int shell)
std::map< double, std::map< double, double > > TriDimensionMap
std::map< G4String, G4MuElecCrossSectionDataSet *, std::less< G4String > > MapData
G4double energy(const ThreeVector &p, const G4double m)
void RandomizeEjectedElectronDirection(G4ParticleDefinition *aParticleDefinition, G4double incomingParticleEnergy, G4double outgoingParticleEnergy, G4double &cosTheta, G4double &phi)
G4VAtomDeexcitation * fAtomDeexcitation
virtual G4double CrossSectionPerVolume(const G4Material *material, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax)
G4MuElecInelasticModel(const G4ParticleDefinition *p=0, const G4String &nam="MuElecInelasticModel")
std::vector< double > eTdummyVec
double G4double
Definition: G4Types.hh:76
std::map< G4String, G4String, std::less< G4String > > MapFile
G4int RandomSelect(G4double energy, const G4String &particle)
std::map< G4String, G4double, std::less< G4String > > lowEnergyLimit