52     fDiffraction(0), fDiffractionRatio(0)
 
   63   char* dirName = getenv(
"G4PhysListDocDir");
 
   65     std::ofstream outFile;
 
   68     outFile.open(pathName);
 
   69     outFile << 
"<html>\n";
 
   70     outFile << 
"<head>\n";
 
   72     outFile << 
"<title>Description of G4HadronElasticProcess</title>\n";
 
   73     outFile << 
"</head>\n";
 
   74     outFile << 
"<body>\n";
 
   76     outFile << 
"G4HadronElasticProcess handles the elastic scattering of\n" 
   77             << 
"hadrons by invoking one or more hadronic models and one or\n" 
   78             << 
"more hadronic cross sections.\n";
 
   80     outFile << 
"</body>\n";
 
   81     outFile << 
"</html>\n";
 
  121       ed << 
" PostStepDoIt failed on element selection" << 
G4endl;
 
  122       G4Exception(
"G4HadronElasticProcess::PostStepDoIt", 
"had003", 
 
  148           ed << 
"Target element "<< elm->
GetName()<<
"  Z= "  
  152           ed << 
" ApplyYourself failed" << 
G4endl;
 
  153           G4Exception(
"G4HadronElasticProcess::PostStepDoIt", 
"had006", 
 
  157       result = 
CheckResult(theProj, *targNucleus, result);
 
  180       ed << 
"Target element "<< elm->
GetName()<<
"  Z= "  
  183       DumpState(track,
"ChooseHadronicInteraction",ed);
 
  184       ed << 
" No HadronicInteraction found out" << 
G4endl;
 
  185       G4Exception(
"G4HadronElasticProcess::PostStepDoIt", 
"had005", 
 
  195     G4cout << 
"G4HadronElasticProcess::PostStepDoIt for "  
  197            << 
" in " << material->
GetName() 
 
  211       ed << 
"Target element "<< elm->
GetName()<<
"  Z= "  
  215       ed << 
" ApplyYourself failed" << 
G4endl;
 
  216       G4Exception(
"G4HadronElasticProcess::PostStepDoIt", 
"had006", 
 
  235            << 
" dir= " << outdir
 
  242   if(efinal < 0.0) { efinal = 0.0; }
 
  243   if(edep < 0.0)   { edep = 0.0; }
 
  257     outdir.rotate(phi, it);
 
  258     outdir.rotateUz(indir);
 
  280       pdir.rotate(phi, it);
 
  281       pdir.rotateUz(indir);
 
virtual G4double ComputeRatio(const G4ParticleDefinition *, G4double kinEnergy, G4int, G4int)=0
 
const std::vector< G4double > * GetEnergyCutsVector(size_t pcIdx) const 
 
G4HadronElasticProcess(const G4String &procName="hadElastic")
 
std::ostringstream G4ExceptionDescription
 
G4HadSecondary * GetSecondary(size_t i)
 
G4double GetKineticEnergy() const 
 
CLHEP::Hep3Vector G4ThreeVector
 
G4LorentzRotation & GetTrafoToLab()
 
const G4DynamicParticle * GetDynamicParticle() const 
 
const G4String & GetName() const 
 
const G4ThreeVector & GetMomentumChange() const 
 
const G4ThreeVector & GetPosition() const 
 
G4TrackStatus GetTrackStatus() const 
 
const G4MaterialCutsCouple * GetMaterialCutsCouple() const 
 
virtual void PreparePhysicsTable(const G4ParticleDefinition &)
 
void SetTouchableHandle(const G4TouchableHandle &apValue)
 
virtual void SetLowestEnergy(G4double)
 
virtual ~G4HadronElasticProcess()
 
void SetMomentumDirection(const G4ThreeVector &aDirection)
 
G4double GetEnergyChange() const 
 
G4ParticleDefinition * GetDefinition() const 
 
void CheckEnergyMomentumConservation(const G4Track &, const G4Nucleus &)
 
const G4String & GetModelName() const 
 
void SetDiffraction(G4HadronicInteraction *, G4VCrossSectionRatio *)
 
#define G4HadronicDeprecate(name)
 
void ClearNumberOfInteractionLengthLeft()
 
G4ProcessManager * GetProcessManager() const 
 
G4VCrossSectionRatio * fDiffractionRatio
 
const G4String & GetParticleName() const 
 
void SetWeight(G4double aValue)
 
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
 
void ProposeWeight(G4double finalWeight)
 
void DumpState(const G4Track &, const G4String &, G4ExceptionDescription &)
 
void SetTrafoToLab(const G4LorentzRotation &aT)
 
G4ProcessVector * GetAtRestProcessVector(G4ProcessVectorTypeIndex typ=typeGPIL) const 
 
G4double GetKineticEnergy() const 
 
void AddDataSet(G4VCrossSectionDataSet *aDataSet)
 
void FillResult(G4HadFinalState *aR, const G4Track &aT)
 
G4GLOB_DLL std::ostream G4cout
 
G4ParticleChange * theTotalResult
 
void ProposeNonIonizingEnergyDeposit(G4double anEnergyPart)
 
const G4ThreeVector & GetMomentumDirection() const 
 
G4CrossSectionDataStore * GetCrossSectionDataStore()
 
static G4Neutron * Neutron()
 
G4double GetGlobalTime() const 
 
const G4String & GetProcessName() const 
 
const G4TouchableHandle & GetTouchableHandle() const 
 
G4Material * GetMaterial() const 
 
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
 
virtual void Initialize(const G4Track &)
 
static G4ProductionCutsTable * GetProductionCutsTable()
 
const G4ThreeVector & GetMomentumDirection() const 
 
G4Nucleus * GetTargetNucleusPointer()
 
void SetNumberOfSecondaries(G4int totSecondaries)
 
G4DynamicParticle * GetParticle()
 
void ProposeEnergy(G4double finalEnergy)
 
G4HadronicInteraction * fDiffraction
 
void AddSecondary(G4Track *aSecondary)
 
G4double GetWeight() const 
 
virtual void Description() const 
 
G4HadronicInteraction * ChooseHadronicInteraction(const G4HadProjectile &aHadProjectile, G4Nucleus &aTargetNucleus, G4Material *aMaterial, G4Element *anElement)
 
void SetRecoilEnergyThreshold(G4double val)
 
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
 
G4Element * SampleZandA(const G4DynamicParticle *, const G4Material *, G4Nucleus &target)
 
void ProposeTrackStatus(G4TrackStatus status)
 
const G4String & GetName() const 
 
virtual G4VParticleChange * PostStepDoIt(const G4Track &aTrack, const G4Step &aStep)
 
void Report(std::ostream &aS)
 
G4int GetNumberOfSecondaries() const 
 
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)=0
 
G4double GetLocalEnergyDeposit() const 
 
virtual void PreparePhysicsTable(const G4ParticleDefinition &)
 
virtual void SetLowestEnergyNeutron(G4double)
 
G4HadFinalState * CheckResult(const G4HadProjectile &thePro, const G4Nucleus &targetNucleus, G4HadFinalState *result)