Geant4  10.01.p03
G4tgbGeometryDumper.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4tgbGeometryDumper.cc 80341 2014-04-11 12:48:55Z gcosmo $
28 // GEANT4 tag $Name: $
29 //
30 //
31 // class G4tgbGeometryDumper
32 
33 // History:
34 // - Created. P.Arce, CIEMAT (November 2007)
35 // -------------------------------------------------------------------------
36 
37 #include "G4tgbGeometryDumper.hh"
38 
39 #include "G4tgrMessenger.hh"
40 
41 #include "G4SystemOfUnits.hh"
42 #include "G4UIcommand.hh"
43 #include "G4Material.hh"
44 #include "G4Element.hh"
45 #include "G4VSolid.hh"
46 #include "G4Box.hh"
47 #include "G4Tubs.hh"
48 #include "G4Cons.hh"
49 #include "G4Trap.hh"
50 #include "G4Sphere.hh"
51 #include "G4Orb.hh"
52 #include "G4Trd.hh"
53 #include "G4Para.hh"
54 #include "G4Torus.hh"
55 #include "G4Hype.hh"
56 #include "G4Polycone.hh"
57 #include "G4GenericPolycone.hh"
58 #include "G4Polyhedra.hh"
59 #include "G4EllipticalTube.hh"
60 #include "G4Ellipsoid.hh"
61 #include "G4EllipticalCone.hh"
62 #include "G4Hype.hh"
63 #include "G4Tet.hh"
64 #include "G4TwistedBox.hh"
65 #include "G4TwistedTrap.hh"
66 #include "G4TwistedTrd.hh"
67 #include "G4TwistedTubs.hh"
68 #include "G4PVPlacement.hh"
69 #include "G4PVParameterised.hh"
70 #include "G4PVReplica.hh"
71 #include "G4BooleanSolid.hh"
72 #include "G4ReflectionFactory.hh"
73 #include "G4ReflectedSolid.hh"
74 #include "G4LogicalVolumeStore.hh"
75 #include "G4PhysicalVolumeStore.hh"
76 #include "G4GeometryTolerance.hh"
77 #include "G4VPVParameterisation.hh"
78 #include <iomanip>
79 
80 //------------------------------------------------------------------------
82 
83 //------------------------------------------------------------------------
85  : theFile(0), theRotationNumber(0)
86 {
87 }
88 
89 //------------------------------------------------------------------------
91 {
92  if( theInstance == 0 ){
94  }
95 
96  return theInstance;
97 
98 }
99 
100 //------------------------------------------------------------------------
102 {
103  theFile = new std::ofstream(fname);
104 
106  DumpPhysVol( pv ); // dump volume and recursively it will dump all hierarchy
107 }
108 
109 //---------------------------------------------------------------------
111 {
113  G4PhysicalVolumeStore::const_iterator ite;
114  G4VPhysicalVolume* pv = *(pvstore->begin());
115  for( ;; )
116  {
117  G4LogicalVolume* lv = pv->GetMotherLogical();
118  if( lv == 0 ) { break; }
119 
120  //----- look for one PV of this LV
121  for( ite = pvstore->begin(); ite != pvstore->end(); ite++ )
122  {
123  pv = (*ite);
124  if( pv->GetLogicalVolume() == lv )
125  {
126  break;
127  }
128  }
129  }
130 
131  return pv;
132 }
133 
134 
135 //------------------------------------------------------------------------
137 {
138 }
139 
140 //------------------------------------------------------------------------
142 {
143 
144  //--- Dump logical volume first
145  G4LogicalVolume* lv = pv->GetLogicalVolume();
146 
148 
149  //--- It is not needed to dump _refl volumes created when parent is reflected
150  // !!WARNING : it must be avoided to reflect a volume hierarchy if children
151  // has also been reflected, as both will have same name
152 
153  if( reffact->IsReflected( lv )
154  && reffact->IsReflected( pv->GetMotherLogical() ) ) { return; }
155 
156 
157  G4bool bVolExists = CheckIfLogVolExists( lv->GetName(), lv );
158 
159  //---- Construct this PV
160  if( pv->GetMotherLogical() != 0 ) // not WORLD volume
161  {
162  if( !pv->IsReplicated() )
163  {
164  G4String lvName = lv->GetName();
165  if( !bVolExists )
166  {
167  lvName = DumpLogVol( lv );
168  }
169  DumpPVPlacement( pv, lvName );
170  }
171  else if( pv->IsParameterised() )
172  {
173  G4PVParameterised* pvparam = (G4PVParameterised*)(pv);
174  DumpPVParameterised( pvparam );
175  }
176  else
177  {
178  G4String lvName = lv->GetName();
179  if( !bVolExists )
180  {
181  lvName = DumpLogVol( lv );
182  }
183  G4PVReplica* pvrepl = (G4PVReplica*)(pv);
184  DumpPVReplica( pvrepl, lvName );
185  }
186 
187  }
188  else
189  {
190  DumpLogVol( lv );
191  }
192 
193  if( !bVolExists )
194  {
195  //---- Construct PV's who has this LV as mother
196  std::vector<G4VPhysicalVolume*> pvChildren = GetPVChildren( lv );
197  std::vector<G4VPhysicalVolume*>::const_iterator ite;
198  for( ite = pvChildren.begin(); ite != pvChildren.end(); ite++ )
199  {
200  DumpPhysVol( *ite );
201  }
202  }
203 }
204 
205 //------------------------------------------------------------------------
206 void
208  const G4String& lvName, G4int copyNo )
209 {
210  G4String pvName = pv->GetName();
211 
212  G4RotationMatrix* rotMat = pv->GetRotation();
213  if( !rotMat ) rotMat = new G4RotationMatrix();
214 
215  //---- Check if it is reflected
217  G4LogicalVolume* lv = pv->GetLogicalVolume();
218  if( reffact->IsReflected( lv ) )
219  {
220 #ifdef G4VERBOSE
222  {
223  G4cout << " G4tgbGeometryDumper::DumpPVPlacement() - Reflected volume: "
224  << pv->GetName() << G4endl;
225  }
226 #endif
227  G4ThreeVector colx = rotMat->colX();
228  G4ThreeVector coly = rotMat->colY();
229  G4ThreeVector colz = rotMat->colZ();
230  // apply a Z reflection (reflection matrix is decomposed in new
231  // reflection-free rotation + z-reflection)
232  colz *= -1.;
233  G4Rep3x3 rottemp(colx.x(),coly.x(),colz.x(),
234  colx.y(),coly.y(),colz.y(),
235  colx.z(),coly.z(),colz.z());
236  // matrix representation (inverted)
237  *rotMat = G4RotationMatrix(rottemp);
238  *rotMat = (*rotMat).inverse();
239  pvName += "_refl";
240  }
241  G4String rotName = DumpRotationMatrix( rotMat );
243 
244  if( copyNo == -999 ) //for parameterisations copy number is provided
245  {
246  copyNo = pv->GetCopyNo();
247  }
248 
249  G4String fullname = pvName
250  +"#"+G4UIcommand::ConvertToString(copyNo)
251  +"/"+pv->GetMotherLogical()->GetName();
252 
253  if( !CheckIfPhysVolExists(fullname, pv ))
254  {
255  (*theFile)
256  << ":PLACE "
257  << SubstituteRefl(AddQuotes(lvName))
258  << " " << copyNo << " "
260  << " " << AddQuotes(rotName) << " "
261  << pos.x() << " " << pos.y() << " " << pos.z() << G4endl;
262 
263  thePhysVols[fullname] = pv;
264  }
265 }
266 
267 
268 //------------------------------------------------------------------------
270 {
271  G4String pvName = pv->GetName();
272 
273  EAxis axis;
274  G4int nReplicas;
275  G4double width;
276  G4double offset;
277  G4bool consuming;
278  pv->GetReplicationData(axis, nReplicas, width, offset, consuming);
279 
281 
282  G4LogicalVolume* lv = pv->GetLogicalVolume();
283  G4VSolid* solid1st = param->ComputeSolid(0, pv);
284  G4Material* mate1st = param->ComputeMaterial(0, pv );
285  std::vector<G4double> params1st = GetSolidParams( solid1st );
286  std::vector<G4double> newParams;
287  G4VSolid* newSolid = solid1st;
288  G4String lvName;
289 
290  for( G4int ii = 0; ii < nReplicas; ii++ )
291  {
292  G4Material* newMate = param->ComputeMaterial(ii, pv );
293  if( solid1st->GetEntityType() == "G4Box")
294  {
295  G4Box* box = (G4Box*)(solid1st);
296  param->ComputeDimensions(*box, ii, pv );
297  newParams = GetSolidParams( box );
298  newSolid = (G4VSolid*)box;
299  }
300  else if( solid1st->GetEntityType() == "G4Tubs")
301  {
302  G4Tubs* tubs = (G4Tubs*)(solid1st);
303  param->ComputeDimensions(*tubs, ii, pv );
304  newParams = GetSolidParams( tubs );
305  newSolid = (G4VSolid*)tubs;
306  }
307  else if( solid1st->GetEntityType() == "G4Trd")
308  {
309  G4Trd* trd = (G4Trd*)(solid1st);
310  param->ComputeDimensions(*trd, ii, pv );
311  newParams = GetSolidParams( trd );
312  newSolid = (G4VSolid*)trd;
313  }
314  else if( solid1st->GetEntityType() == "G4Trap")
315  {
316  G4Trap* trap = (G4Trap*)(solid1st);
317  param->ComputeDimensions(*trap, ii, pv );
318  newParams = GetSolidParams( trap );
319  newSolid = (G4VSolid*)trap;
320  }
321  else if( solid1st->GetEntityType() == "G4Cons")
322  {
323  G4Cons* cons = (G4Cons*)(solid1st);
324  param->ComputeDimensions(*cons, ii, pv );
325  newParams = GetSolidParams( cons );
326  newSolid = (G4VSolid*)cons;
327  }
328  else if( solid1st->GetEntityType() == "G4Sphere")
329  {
330  G4Sphere* sphere = (G4Sphere*)(solid1st);
331  param->ComputeDimensions(*sphere, ii, pv );
332  newParams = GetSolidParams( sphere );
333  newSolid = (G4VSolid*)sphere;
334  }
335  else if( solid1st->GetEntityType() == "G4Orb")
336  {
337  G4Orb* orb = (G4Orb*)(solid1st);
338  param->ComputeDimensions(*orb, ii, pv );
339  newParams = GetSolidParams( orb );
340  newSolid = (G4VSolid*)orb;
341  }
342  else if( solid1st->GetEntityType() == "G4Torus")
343  {
344  G4Torus* torus = (G4Torus*)(solid1st);
345  param->ComputeDimensions(*torus, ii, pv );
346  newParams = GetSolidParams( torus );
347  newSolid = (G4VSolid*)torus;
348  }
349  else if( solid1st->GetEntityType() == "G4Para")
350  {
351  G4Para* para = (G4Para*)(solid1st);
352  param->ComputeDimensions(*para, ii, pv );
353  newParams = GetSolidParams( para );
354  newSolid = (G4VSolid*)para;
355  }
356  else if( solid1st->GetEntityType() == "G4Polycone")
357  {
358  G4Polycone* polycone = (G4Polycone*)(solid1st);
359  param->ComputeDimensions(*polycone, ii, pv );
360  newParams = GetSolidParams( polycone );
361  newSolid = (G4VSolid*)polycone;
362  }
363  else if( solid1st->GetEntityType() == "G4Polyhedra")
364  {
365  G4Polyhedra* polyhedra = (G4Polyhedra*)(solid1st);
366  param->ComputeDimensions(*polyhedra, ii, pv );
367  newParams = GetSolidParams( polyhedra );
368  newSolid = (G4VSolid*)polyhedra;
369  }
370  else if( solid1st->GetEntityType() == "G4Hype")
371  {
372  G4Hype* hype = (G4Hype*)(solid1st);
373  param->ComputeDimensions(*hype, ii, pv );
374  newParams = GetSolidParams( hype );
375  newSolid = (G4VSolid*)hype;
376  }
377  if( ii == 0 || mate1st != newMate || params1st[0] != newParams[0] )
378  {
379  G4String extraName = "";
380  if( ii != 0 )
381  {
382  extraName= "#"+G4UIcommand::ConvertToString(ii)
383  +"/"+pv->GetMotherLogical()->GetName();
384  }
385  lvName = DumpLogVol( lv, extraName, newSolid, newMate );
386  }
387 
388  param->ComputeTransformation(ii, pv);
389  DumpPVPlacement( pv, lvName, ii );
390  }
391 }
392 
393 
394 //------------------------------------------------------------------------
396  const G4String& lvName )
397 {
398  EAxis axis;
399  G4int nReplicas;
400  G4double width;
401  G4double offset;
402  G4bool consuming;
403  pv->GetReplicationData(axis, nReplicas, width, offset, consuming);
404  G4String axisName;
405  switch (axis )
406  {
407  case kXAxis:
408  axisName = "X";
409  break;
410  case kYAxis:
411  axisName = "Y";
412  break;
413  case kZAxis:
414  axisName = "Z";
415  break;
416  case kRho:
417  axisName = "R";
418  break;
419  case kPhi:
420  axisName = "PHI";
421  break;
422  case kRadial3D:
423  case kUndefined:
424  G4String ErrMessage = "Unknown axis of replication for volume"
425  + pv->GetName();
426  G4Exception("G4tgbGeometryDumper::DumpPVReplica",
427  "Wrong axis ", FatalException, ErrMessage);
428  break;
429  }
430 
431  G4String fullname = lvName
432  +"/"+pv->GetMotherLogical()->GetName();
433 
434  if( !CheckIfPhysVolExists(fullname, pv ))
435  {
436  (*theFile)
437  << ":REPL "
438  << SubstituteRefl(AddQuotes(lvName))
439  << " " << SubstituteRefl(AddQuotes(pv->GetMotherLogical()->GetName()))
440  << " " << axisName
441  << " " << nReplicas;
442  if( axis != kPhi )
443  {
444  (*theFile)
445  << " " << width
446  << " " << offset << G4endl;
447  }
448  else
449  {
450  (*theFile)
451  << " " << width/deg << "*deg"
452  << " " << offset/deg << "*deg" << G4endl;
453  }
454 
455  thePhysVols[fullname] = pv;
456  }
457 }
458 
459 
460 //------------------------------------------------------------------------
461 G4String
463  G4VSolid* solid, G4Material* mate )
464 {
465  G4String lvName;
466 
467  if( extraName == "" ) //--- take out the '_refl' in the name
468  {
469  lvName = GetObjectName(lv,theLogVols);
470  }
471  else
472  {
473  lvName = lv->GetName()+extraName;
474  }
475 
476  if( theLogVols.find( lvName ) != theLogVols.end() ) // alredy dumped
477  {
478  return lvName;
479  }
480 
481  if( !solid ) { solid = lv->GetSolid(); }
482 
483  //---- Dump solid
484  G4String solidName = DumpSolid( solid, extraName );
485 
486  //---- Dump material
487  if( !mate ) { mate = lv->GetMaterial(); }
488  G4String mateName = DumpMaterial( mate );
489 
490  //---- Dump logical volume (solid + material)
491  (*theFile) << ":VOLU " << SubstituteRefl(AddQuotes(lvName)) << " "
492  << SupressRefl(AddQuotes(solidName))
493  << " " << AddQuotes(mateName) << G4endl;
494 
495  theLogVols[lvName] = lv;
496 
497  return lvName;
498 }
499 
500 
501 //------------------------------------------------------------------------
503 {
504  G4String mateName = GetObjectName(mat,theMaterials);
505  if( theMaterials.find( mateName ) != theMaterials.end() ) // alredy dumped
506  {
507  return mateName;
508  }
509 
510  size_t numElements = mat->GetNumberOfElements();
511  G4double density = mat->GetDensity()/g*cm3;
512 
513 
514  // start tag
515  //
516  if (numElements == 1)
517  {
518  (*theFile) << ":MATE " << AddQuotes(mateName) << " "
519  << mat->GetZ() << " " << mat->GetA()/(g/mole) << " "
520  << density << G4endl;
521  }
522  else
523  {
524  const G4ElementVector* elems = mat->GetElementVector();
525  const G4double* fractions = mat->GetFractionVector();
526  for (size_t ii = 0; ii < numElements; ii++)
527  {
528  DumpElement( (*elems)[ii] );
529  }
530 
531  (*theFile) << ":MIXT "<< AddQuotes(mateName) << " "
532  << density << " " << numElements << G4endl;
533  // close start element tag and get ready to do composit "parts"
534  for (size_t ii = 0; ii < numElements; ii++)
535  {
536  (*theFile) << " "
537  << AddQuotes(GetObjectName((*elems)[ii],theElements)) << " "
538  << fractions[ii] << G4endl;
539  }
540 
541  }
542 
543  (*theFile) << ":MATE_MEE " << AddQuotes(mateName) << " "
545  << "*eV" << G4endl;
546 
547  (*theFile) << ":MATE_TEMPERATURE " << AddQuotes(mateName) << " "
548  << mat->GetTemperature()/kelvin << "*kelvin" << G4endl;
549 
550  (*theFile) << ":MATE_PRESSURE " << AddQuotes(mateName) << " "
551  << mat->GetPressure()/atmosphere << "*atmosphere" << G4endl;
552 
553  G4State state = mat->GetState();
554  G4String stateStr;
555  switch (state) {
556  case kStateUndefined:
557  stateStr = "Undefined";
558  break;
559  case kStateSolid:
560  stateStr = "Solid";
561  break;
562  case kStateLiquid:
563  stateStr = "Liquid";
564  break;
565  case kStateGas:
566  stateStr = "Gas";
567  break;
568  }
569 
570  (*theFile) << ":MATE_STATE " << AddQuotes(mateName) << " "
571  << stateStr << G4endl;
572 
573  theMaterials[mateName] = mat;
574 
575  return mateName;
576 }
577 
578 
579 //------------------------------------------------------------------------
581 {
582  G4String elemName = GetObjectName(ele,theElements);
583 
584  if( theElements.find( elemName ) != theElements.end() ) // alredy dumped
585  {
586  return;
587  }
588 
589  //--- Add symbol name: Material mixtures store the components as elements
590  // (even if the input are materials), but without symbol
591  //
592  G4String symbol = ele->GetSymbol();
593  if( symbol == "" || symbol == " " )
594  {
595  symbol = elemName;
596  }
597 
598  if( ele->GetNumberOfIsotopes() == 0 )
599  {
600  (*theFile) << ":ELEM " << AddQuotes(elemName) << " "
601  << AddQuotes(symbol) << " " << ele->GetZ() << " "
602  << ele->GetA()/(g/mole) << " " << G4endl;
603  }
604  else
605  {
606  const G4IsotopeVector* isots = ele->GetIsotopeVector();
607  for (size_t ii = 0; ii < ele->GetNumberOfIsotopes(); ii++)
608  {
609  DumpIsotope( (*isots)[ii] );
610  }
611 
612  (*theFile) << ":ELEM_FROM_ISOT " << AddQuotes(elemName) << " "
613  << AddQuotes(symbol) << " " << ele->GetNumberOfIsotopes()
614  << G4endl;
615  const G4double* fractions = ele->GetRelativeAbundanceVector();
616  for (size_t ii = 0; ii < ele->GetNumberOfIsotopes(); ii++)
617  {
618  (*theFile) << " "
619  << AddQuotes(GetObjectName((*isots)[ii],theIsotopes)) << " "
620  << fractions[ii] << G4endl;
621  }
622  }
623  theElements[elemName] = ele;
624 }
625 
626 
627 //------------------------------------------------------------------------
629 {
630  G4String isotName = GetObjectName(isot,theIsotopes);
631  if( theIsotopes.find( isotName ) != theIsotopes.end() ) // alredy dumped
632  {
633  return;
634  }
635 
636  (*theFile) << ":ISOT " << AddQuotes(isotName) << " "
637  << isot->GetZ() << " " << isot->GetN() << " "
638  << isot->GetA()/(g/mole) << " " << G4endl;
639 
640  theIsotopes[isotName] = isot;
641 }
642 
643 
644 //------------------------------------------------------------------------
646  const G4String& extraName )
647 {
648  G4String solidName;
649  if( extraName == "" )
650  {
651  solidName = GetObjectName(solid,theSolids);
652  }
653  else
654  {
655  solidName = solid->GetName()+extraName;
656  }
657 
658  if( theSolids.find( solidName ) != theSolids.end() ) // alredy dumped
659  {
660  return solidName;
661  }
662 
663  G4String solidType = solid->GetEntityType();
664  solidType = GetTGSolidType( solidType );
665 
666  if (solidType == "UNIONSOLID")
667  {
668  DumpBooleanVolume( "UNION", solid );
669 
670  } else if (solidType == "SUBTRACTIONSOLID") {
671  DumpBooleanVolume( "SUBTRACTION", solid );
672 
673  } else if (solidType == "INTERSECTIONSOLID") {
674  DumpBooleanVolume( "INTERSECTION", solid );
675 
676  } else if (solidType == "REFLECTEDSOLID") {
677  G4ReflectedSolid* solidrefl = dynamic_cast<G4ReflectedSolid*>(solid);
678  if (!solidrefl)
679  {
680  G4Exception("G4tgbGeometryDumper::DumpSolid()",
681  "InvalidType", FatalException, "Invalid reflected solid!");
682  return solidName;
683  }
684  G4VSolid* solidori = solidrefl->GetConstituentMovedSolid();
685  DumpSolid( solidori );
686  }
687  else
688  {
689  (*theFile) << ":SOLID " << AddQuotes(solidName) << " ";
690  (*theFile) << AddQuotes(solidType) << " ";
691  DumpSolidParams( solid );
692  theSolids[solidName] = solid;
693  }
694 
695  return solidName;
696 }
697 
698 
699 //------------------------------------------------------------------------
701  G4VSolid* so )
702 {
703  G4BooleanSolid * bso = dynamic_cast < G4BooleanSolid * > (so);
704  if (!bso) { return; }
705  G4VSolid* solid0 = bso->GetConstituentSolid( 0 );
706  G4VSolid* solid1 = bso->GetConstituentSolid( 1 );
707  G4DisplacedSolid* solid1Disp = 0;
708  G4bool displaced = dynamic_cast<G4DisplacedSolid*>(solid1);
709  if( displaced )
710  {
711  solid1Disp = dynamic_cast<G4DisplacedSolid*>(solid1);
712  if (solid1Disp) { solid1 = solid1Disp->GetConstituentMovedSolid(); }
713  }
714  DumpSolid( solid0 );
715  DumpSolid( solid1 );
716 
717  G4String rotName;
719  if( displaced )
720  {
721  pos = solid1Disp->GetObjectTranslation(); // translation is of mother frame
722  rotName = DumpRotationMatrix( new G4RotationMatrix( (solid1Disp->
723  GetTransform().NetRotation()).inverse() ) );
724  }
725  else // no displacement
726  {
727  rotName = DumpRotationMatrix( new G4RotationMatrix );
728  pos = G4ThreeVector();
729  }
730 
731  G4String bsoName = GetObjectName(so,theSolids);
732  if( theSolids.find( bsoName ) != theSolids.end() ) return; // alredy dumped
733  G4String solid0Name = FindSolidName( solid0 );
734  G4String solid1Name = FindSolidName( solid1 );
735 
736  (*theFile) << ":SOLID "
737  << AddQuotes(bsoName) << " "
738  << AddQuotes(solidType) << " "
739  << AddQuotes(solid0Name) << " "
740  << AddQuotes(solid1Name) << " "
741  << AddQuotes(rotName) << " "
742  << approxTo0(pos.x()) << " "
743  << approxTo0(pos.y()) << " "
744  << approxTo0(pos.z()) << " " << G4endl;
745 
746  theSolids[bsoName] = bso;
747 }
748 
749 
750 //------------------------------------------------------------------------
752 {
753  std::vector<G4double> params = GetSolidParams( so );
754  for( size_t ii = 0 ; ii < params.size(); ii++ )
755  {
756  (*theFile) << params[ii] << " " ;
757  }
758  (*theFile) << G4endl;
759 }
760 
761 
762 //------------------------------------------------------------------------
763 std::vector<G4double> G4tgbGeometryDumper::GetSolidParams( const G4VSolid * so)
764 {
765  std::vector<G4double> params;
766 
767  G4String solidType = so->GetEntityType();
768  solidType = GetTGSolidType( solidType );
769 
770  if (solidType == "BOX") {
771  const G4Box * sb = dynamic_cast < const G4Box*>(so);
772  if (sb) {
773  params.push_back( sb->GetXHalfLength() );
774  params.push_back( sb->GetYHalfLength() );
775  params.push_back( sb->GetZHalfLength() );
776  }
777  } else if (solidType == "TUBS") {
778  const G4Tubs * tu = dynamic_cast < const G4Tubs * > (so);
779  if (tu) {
780  params.push_back( tu->GetInnerRadius() );
781  params.push_back( tu->GetOuterRadius() );
782  params.push_back( tu->GetZHalfLength() );
783  params.push_back( tu->GetStartPhiAngle()/deg );
784  params.push_back( tu->GetDeltaPhiAngle()/deg );
785  }
786  } else if (solidType == "TRAP") {
787  const G4Trap * trp = dynamic_cast < const G4Trap * > (so);
788  if (trp) {
789  G4ThreeVector symAxis(trp->GetSymAxis());
790  params.push_back( trp->GetZHalfLength() );
791  params.push_back( symAxis.theta()/deg);
792  params.push_back( symAxis.phi()/deg);
793  params.push_back( trp->GetYHalfLength1() );
794  params.push_back( trp->GetXHalfLength1() );
795  params.push_back( trp->GetXHalfLength2() );
796  params.push_back( std::atan(trp->GetTanAlpha1())/deg );
797  params.push_back( trp->GetYHalfLength2() );
798  params.push_back( trp->GetXHalfLength3() );
799  params.push_back( trp->GetXHalfLength4() );
800  params.push_back( std::atan(trp->GetTanAlpha2())/deg );
801  }
802  } else if (solidType == "TRD") {
803  const G4Trd * tr = dynamic_cast < const G4Trd * > (so);
804  if (tr) {
805  params.push_back( tr->GetXHalfLength1() );
806  params.push_back( tr->GetXHalfLength2() );
807  params.push_back( tr->GetYHalfLength1() );
808  params.push_back( tr->GetYHalfLength2() );
809  params.push_back( tr->GetZHalfLength());
810  }
811  } else if (solidType == "PARA") {
812  const G4Para * para = dynamic_cast < const G4Para * > (so);
813  if (para) {
814  G4ThreeVector symAxis(para->GetSymAxis());
815  params.push_back( para->GetXHalfLength());
816  params.push_back( para->GetYHalfLength());
817  params.push_back( para->GetZHalfLength());
818  params.push_back( std::atan(para->GetTanAlpha())/deg);
819  params.push_back( symAxis.theta()/deg);
820  params.push_back( symAxis.phi()/deg);
821  }
822  } else if (solidType == "CONS") {
823  const G4Cons * cn = dynamic_cast < const G4Cons * > (so);
824  if (cn) {
825  params.push_back( cn->GetInnerRadiusMinusZ() );
826  params.push_back( cn->GetOuterRadiusMinusZ() );
827  params.push_back( cn->GetInnerRadiusPlusZ() );
828  params.push_back( cn->GetOuterRadiusPlusZ() );
829  params.push_back( cn->GetZHalfLength() );
830  params.push_back( cn->GetStartPhiAngle()/deg );
831  params.push_back( cn->GetDeltaPhiAngle()/deg );
832  }
833  } else if (solidType == "SPHERE") {
834  const G4Sphere * sphere = dynamic_cast < const G4Sphere * > (so);
835  if (sphere) {
836  params.push_back( sphere->GetInnerRadius());
837  params.push_back( sphere->GetOuterRadius());
838  params.push_back( sphere->GetStartPhiAngle()/deg);
839  params.push_back( sphere->GetDeltaPhiAngle()/deg);
840  params.push_back( sphere->GetStartThetaAngle()/deg);
841  params.push_back( sphere->GetDeltaThetaAngle()/deg);
842  }
843  } else if (solidType == "ORB") {
844  const G4Orb * orb = dynamic_cast < const G4Orb * > (so);
845  if (orb) {
846  params.push_back( orb->GetRadius());
847  }
848  } else if (solidType == "TORUS") {
849  const G4Torus * torus = dynamic_cast < const G4Torus * > (so);
850  if (torus) {
851  params.push_back( torus->GetRmin());
852  params.push_back( torus->GetRmax());
853  params.push_back( torus->GetRtor());
854  params.push_back( torus->GetSPhi()/deg);
855  params.push_back( torus->GetDPhi()/deg);
856  }
857  } else if (solidType == "POLYCONE") {
858  //--- Dump RZ corners, as original parameters will not be present
859  // if it was build from RZ corners
860  const G4Polycone * plc = dynamic_cast < const G4Polycone * > (so);
861  if (plc) {
862  G4double angphi = plc->GetStartPhi()/deg;
863  if( angphi > 180*deg ) { angphi -= 360*deg; }
864  G4int ncor = plc->GetNumRZCorner();
865  params.push_back( angphi );
866  params.push_back( plc->GetOriginalParameters()->Opening_angle/deg );
867  params.push_back( ncor );
868 
869  for( G4int ii = 0; ii < ncor; ii++ )
870  {
871  params.push_back( plc->GetCorner(ii).r );
872  params.push_back( plc->GetCorner(ii).z );
873  }
874  }
875  } else if (solidType == "GENERICPOLYCONE") {
876  //--- Dump RZ corners
877  const G4GenericPolycone * plc =
878  dynamic_cast < const G4GenericPolycone * > (so);
879  if (plc) {
880  G4double angphi = plc->GetStartPhi()/deg;
881  if( angphi > 180*deg ) { angphi -= 360*deg; }
882  G4double endphi = plc->GetEndPhi()/deg;
883  if( endphi > 180*deg ) { endphi -= 360*deg; }
884  G4int ncor = plc->GetNumRZCorner();
885  params.push_back( angphi );
886  params.push_back( endphi-angphi );
887  params.push_back( ncor );
888 
889  for( G4int ii = 0; ii < ncor; ii++ )
890  {
891  params.push_back( plc->GetCorner(ii).r );
892  params.push_back( plc->GetCorner(ii).z );
893  }
894  }
895  } else if (solidType == "POLYHEDRA") {
896  //--- Dump RZ corners, as original parameters will not be present
897  // if it was build from RZ corners
898  const G4Polyhedra * ph = (dynamic_cast < const G4Polyhedra * > (so));
899  if (ph) {
900  G4double angphi = ph->GetStartPhi()/deg;
901  if( angphi > 180*deg ) angphi -= 360*deg;
902 
903  G4int ncor = ph->GetNumRZCorner();
904 
905  params.push_back( angphi );
906  params.push_back( ph->GetOriginalParameters()->Opening_angle/deg );
907  params.push_back( ph->GetNumSide() );
908  params.push_back( ncor );
909 
910  for( G4int ii = 0; ii < ncor; ii++ )
911  {
912  params.push_back( ph->GetCorner(ii).r );
913  params.push_back( ph->GetCorner(ii).z );
914  }
915  }
916  } else if (solidType == "ELLIPTICALTUBE") {
917  const G4EllipticalTube * eltu =
918  dynamic_cast < const G4EllipticalTube * > (so);
919  if (eltu) {
920  params.push_back( eltu->GetDx());
921  params.push_back( eltu->GetDy());
922  params.push_back( eltu->GetDz());
923  }
924  } else if (solidType == "ELLIPSOID" ){
925  const G4Ellipsoid* dso = dynamic_cast < const G4Ellipsoid * > (so);
926  if (dso) {
927  params.push_back( dso->GetSemiAxisMax(0) );
928  params.push_back( dso->GetSemiAxisMax(1) );
929  params.push_back( dso->GetSemiAxisMax(2) );
930  params.push_back( dso->GetZBottomCut() );
931  params.push_back( dso->GetZTopCut() );
932  }
933  } else if (solidType == "ELLIPTICAL_CONE") {
934  const G4EllipticalCone * elco =
935  dynamic_cast < const G4EllipticalCone * > (so);
936  if (elco) {
937  params.push_back( elco-> GetSemiAxisX() );
938  params.push_back( elco-> GetSemiAxisY() );
939  params.push_back( elco-> GetZMax() );
940  params.push_back( elco-> GetZTopCut() );
941  }
942  } else if (solidType == "HYPE") {
943  const G4Hype* hype = dynamic_cast < const G4Hype * > (so);
944  if (hype) {
945  params.push_back( hype->GetInnerRadius());
946  params.push_back( hype->GetOuterRadius());
947  params.push_back( hype->GetInnerStereo()/deg);
948  params.push_back( hype->GetOuterStereo()/deg);
949  params.push_back( 2*hype->GetZHalfLength());
950  }
951 // } else if( solidType == "TET" ) {
952 
953  } else if( solidType == "TWISTEDBOX" ) {
954  const G4TwistedBox* tbox = dynamic_cast < const G4TwistedBox * > (so);
955  if (tbox) {
956  params.push_back( tbox->GetPhiTwist()/deg );
957  params.push_back( tbox->GetXHalfLength() );
958  params.push_back( tbox->GetYHalfLength() );
959  params.push_back( tbox->GetZHalfLength() );
960  }
961  } else if( solidType == "TWISTEDTRAP" ) {
962  const G4TwistedTrap * ttrap = dynamic_cast < const G4TwistedTrap * > (so);
963  if (ttrap) {
964  params.push_back( ttrap->GetPhiTwist()/deg );
965  params.push_back( ttrap->GetZHalfLength() );
966  params.push_back( ttrap->GetPolarAngleTheta()/deg );
967  params.push_back( ttrap->GetAzimuthalAnglePhi()/deg );
968  params.push_back( ttrap->GetY1HalfLength() );
969  params.push_back( ttrap->GetX1HalfLength() );
970  params.push_back( ttrap->GetX2HalfLength() );
971  params.push_back( ttrap->GetY2HalfLength() );
972  params.push_back( ttrap->GetX3HalfLength() );
973  params.push_back( ttrap->GetX4HalfLength() );
974  params.push_back( ttrap->GetTiltAngleAlpha()/deg );
975  }
976  } else if( solidType == "TWISTEDTRD" ) {
977  const G4TwistedTrd * ttrd = dynamic_cast < const G4TwistedTrd * > (so);
978  if (ttrd) {
979  params.push_back( ttrd->GetX1HalfLength());
980  params.push_back( ttrd->GetX2HalfLength() );
981  params.push_back( ttrd->GetY1HalfLength() );
982  params.push_back( ttrd->GetY2HalfLength() );
983  params.push_back( ttrd->GetZHalfLength() );
984  params.push_back( ttrd->GetPhiTwist()/deg );
985  }
986  } else if( solidType == "TWISTEDTUBS" ) {
987  const G4TwistedTubs * ttub = dynamic_cast < const G4TwistedTubs * > (so);
988  if (ttub) {
989  params.push_back( ttub->GetInnerRadius() );
990  params.push_back( ttub->GetOuterRadius() );
991  params.push_back( ttub->GetZHalfLength() );
992  params.push_back( ttub->GetDPhi()/deg );
993  params.push_back( ttub->GetPhiTwist()/deg );
994  }
995  }
996  else
997  {
998  G4String ErrMessage = "Solid type not supported, sorry... " + solidType;
999  G4Exception("G4tgbGeometryDumpe::DumpSolidParams()",
1000  "NotImplemented", FatalException, ErrMessage);
1001  }
1002 
1003  return params;
1004 }
1005 
1006 
1007 //------------------------------------------------------------------------
1009 {
1010  if (!rotm) { rotm = new G4RotationMatrix(); }
1011 
1012  G4double de = MatDeterminant(rotm);
1013  G4String rotName = LookForExistingRotation( rotm );
1014  if( rotName != "" ) { return rotName; }
1015 
1016  G4ThreeVector v(1.,1.,1.);
1017  if (de < -0.9 ) // a reflection ....
1018  {
1019  (*theFile) << ":ROTM ";
1020  rotName = "RRM";
1022 
1023  (*theFile) << AddQuotes(rotName) << std::setprecision(9) << " "
1024  << approxTo0(rotm->xx()) << " "
1025  << approxTo0(rotm->yx()) << " "
1026  << approxTo0(rotm->zx()) << " "
1027  << approxTo0(rotm->xy()) << " "
1028  << approxTo0(rotm->yy()) << " "
1029  << approxTo0(rotm->zy()) << " "
1030  << approxTo0(rotm->xz()) << " "
1031  << approxTo0(rotm->yz()) << " "
1032  << approxTo0(rotm->zz()) << G4endl;
1033  }
1034  else if(de > 0.9 ) // a rotation ....
1035  {
1036  (*theFile) << ":ROTM ";
1037  rotName = "RM";
1039 
1040  (*theFile) << AddQuotes(rotName) << " "
1041  << approxTo0(rotm->thetaX()/deg) << " "
1042  << approxTo0(rotm->phiX()/deg) << " "
1043  << approxTo0(rotm->thetaY()/deg) << " "
1044  << approxTo0(rotm->phiY()/deg) << " "
1045  << approxTo0(rotm->thetaZ()/deg) << " "
1046  << approxTo0(rotm->phiZ()/deg) << G4endl;
1047  }
1048 
1049  theRotMats[rotName] = rotm;
1050 
1051  return rotName;
1052 }
1053 
1054 
1055 //------------------------------------------------------------------------
1056 std::vector<G4VPhysicalVolume*>
1058 {
1060  G4PhysicalVolumeStore::const_iterator ite;
1061  std::vector<G4VPhysicalVolume*> children;
1062  for( ite = pvstore->begin(); ite != pvstore->end(); ite++ )
1063  {
1064  if( (*ite)->GetMotherLogical() == lv )
1065  {
1066  children.push_back( *ite );
1067 #ifdef G4VERBOSE
1068  if( G4tgrMessenger::GetVerboseLevel() >= 1 )
1069  {
1070  G4cout << " G4tgbGeometryDumper::GetPVChildren() - adding children: "
1071  << (*ite)->GetName() << " of " << lv->GetName() << G4endl;
1072  }
1073 #endif
1074  }
1075  }
1076 
1077  return children;
1078 }
1079 
1080 
1081 //------------------------------------------------------------------------
1083 {
1084  G4String newsolidType = solidType.substr(2,solidType.length() );
1085  for( size_t ii = 0; ii < newsolidType.length(); ii++ )
1086  {
1087  newsolidType[ii] = toupper(newsolidType[ii] );
1088  }
1089  return newsolidType;
1090 }
1091 
1092 
1093 //------------------------------------------------------------------------
1095 {
1096  G4Rep3x3 r = ro->rep3x3();
1097  return r.xx_*(r.yy_*r.zz_ - r.zy_*r.yz_)
1098  - r.yx_*(r.xy_*r.zz_ - r.zy_*r.xz_)
1099  + r.zx_*(r.xy_*r.yz_ - r.yy_*r.xz_);
1100 }
1101 
1102 
1103 //-----------------------------------------------------------------------
1105 {
1107  ->GetSurfaceTolerance();
1108 
1109  if( std::fabs(val) < precision ) { val = 0; }
1110  return val;
1111 }
1112 
1113 
1114 //-----------------------------------------------------------------------
1116 {
1117  //--- look if there is a separating blank
1118 
1119  G4bool bBlank = FALSE;
1120  size_t siz = str.length();
1121  for( size_t ii = 0; ii < siz; ii++ )
1122  {
1123  if( str.substr(ii,1) == " " )
1124  {
1125  bBlank = TRUE;
1126  break;
1127  }
1128  }
1129  G4String str2 = str;
1130  if( bBlank )
1131  {
1132  str2 = G4String("\"") + str2 + G4String("\"");
1133  }
1134  return str2;
1135 }
1136 
1137 
1138 //------------------------------------------------------------------------
1140 {
1141  G4int irefl = name.rfind("_refl");
1142  if( irefl != -1 )
1143  {
1144  name = name.substr( 0, irefl );
1145  }
1146  return name;
1147 }
1148 
1149 //------------------------------------------------------------------------
1151 {
1152  G4int irefl = name.rfind("_refl");
1153  if( irefl != -1 )
1154  {
1155  name = name.substr( 0, irefl ) + "_REFL";
1156  }
1157  return name;
1158 }
1159 
1160 
1161 //------------------------------------------------------------------------
1163 {
1164  G4String isotName = isot->GetName();
1165  // first look if this is isotope is already dumped,
1166  // with original isotope name or new one
1167  //
1168  std::map<G4String,G4Isotope*>::const_iterator ite;
1169  for( ite = theIsotopes.begin(); ite != theIsotopes.end(); ite++ )
1170  {
1171  if( isot == (*ite).second ) { return (*ite).first; }
1172  }
1173 
1174  // Now look if there is another isotope dumped with same name,
1175  // and if found add _N to the name
1176  //
1177  ite = theIsotopes.find( isotName );
1178  if( ite != theIsotopes.end() ) // Isotope found with same name
1179  {
1180  G4Isotope* isotold = (*ite).second;
1181  if( isot != isotold ) // new isotope it is not the really
1182  { // the same one as isotope found
1183  if( !Same2G4Isotopes(isot, isotold))
1184  { // if the two have same data, use the old one
1185  G4int ii = 2; // G4Nist does names isotopes of same element
1186  // with same name
1187  for(;;ii++)
1188  {
1189  G4String newIsotName = isotName + "_"
1191  std::map<G4String,G4Isotope*>::const_iterator ite2 =
1192  theIsotopes.find( newIsotName );
1193  if( ite2 == theIsotopes.end() )
1194  {
1195  isotName = newIsotName;
1196  break;
1197  }
1198  else
1199  {
1200  if( Same2G4Isotopes( isot, (*ite2).second ) )
1201  {
1202  isotName = newIsotName;
1203  break;
1204  }
1205  }
1206  }
1207  }
1208  }
1209  }
1210  return isotName;
1211 }
1212 
1213 
1214 //------------------------------------------------------------------------
1215 template< class TYP > G4String G4tgbGeometryDumper::
1216 GetObjectName( TYP* obj, std::map<G4String,TYP*> objectsDumped )
1217 {
1218  G4String objName = obj->GetName();
1219 
1220  // first look if this is objecy is already dumped,
1221  // with original object name or new one
1222  //
1223  typename std::map<G4String,TYP*>::const_iterator ite;
1224  for( ite = objectsDumped.begin(); ite != objectsDumped.end(); ite++ )
1225  {
1226  if( obj == (*ite).second ) { return (*ite).first; }
1227  }
1228 
1229  // Now look if there is another object dumped with same name,
1230  // and if found add _N to the name
1231  //
1232  ite = objectsDumped.find( objName );
1233 
1234  if( ite != objectsDumped.end() ) // Object found with same name
1235  {
1236  TYP* objold = (*ite).second;
1237  if( obj != objold ) // new object it is not the really
1238  { // the same one as object found
1239  G4int ii = 2;
1240  for(;;ii++)
1241  {
1242  G4String newObjName = objName + "_" + G4UIcommand::ConvertToString(ii);
1243  typename std::map<G4String,TYP*>::const_iterator ite2 =
1244  objectsDumped.find( newObjName );
1245  if( ite2 == objectsDumped.end() )
1246  {
1247  objName = newObjName;
1248  break;
1249  }
1250  }
1251  }
1252  }
1253  return objName;
1254 }
1255 
1256 
1257 //------------------------------------------------------------------------
1259  G4LogicalVolume* pt )
1260 {
1261  if( theLogVols.find( name ) != theLogVols.end() )
1262  {
1263  G4LogicalVolume* lvnew = (*(theLogVols.find(name))).second;
1264  if( lvnew != pt )
1265  {
1266  /*
1267  //---- Reflected volumes are repeated
1268 
1269  G4ReflectionFactory* reffact = G4ReflectionFactory::Instance();
1270  if( !reffact->IsReflected( pt ) && !reffact->IsReflected( lvnew ) )
1271  {
1272  G4String ErrMessage = "LogVol found but not same as before: " + name;
1273  G4Exception("G4tgbGeometryDumper::CheckIfLogVolExists()",
1274  "InvalidSetup", FatalException, ErrMessage);
1275  }
1276  */
1277  }
1278  return 1;
1279  }
1280  else
1281  {
1282  return 0;
1283  }
1284 }
1285 
1286 
1287 //-----------------------------------------------------------------------
1289  G4VPhysicalVolume* pt )
1290 {
1291 #ifdef G4VERBOSE
1292  if( G4tgrMessenger::GetVerboseLevel() >= 1 )
1293  {
1294  G4cout << " G4tgbGeometryDumper::CheckIfPhysVolExists() - "
1295  << name << G4endl;
1296  }
1297 #endif
1298  if( thePhysVols.find( name ) != thePhysVols.end() )
1299  {
1300  if( (*(thePhysVols.find(name))).second != pt )
1301  {
1302  // G4String ErrMessage = "Placement found but not same as before: "
1303  // + name;
1304  // G4Exception("G4tgbGeometryDumper::CheckIfPhysVolExists()",
1305  // "InvalidSetup", FatalException, ErrMessage);
1306  G4cerr << " G4tgbGeometryDumper::CheckIfPhysVolExists () -"
1307  << " Placement found but not same as before : " << name << G4endl;
1308  }
1309  return 1;
1310  }
1311  else
1312  {
1313  return 0;
1314  }
1315 }
1316 
1317 
1318 //-----------------------------------------------------------------------
1319 G4String
1321 {
1322  G4String rmName = "";
1323 
1324  std::map<G4String,G4RotationMatrix*>::const_iterator ite;
1325  for( ite = theRotMats.begin(); ite != theRotMats.end(); ite++ )
1326  {
1327  if( (*ite).second->isNear( *rotm ) )
1328  {
1329  rmName = (*ite).first;
1330  break;
1331  }
1332  }
1333  return rmName;
1334 }
1335 
1336 
1337 //------------------------------------------------------------------------
1338 G4bool
1340 {
1341  if ( (isot1->GetZ() != isot2->GetZ())
1342  || (isot1->GetN() != isot2->GetN())
1343  || (isot1->GetA() != isot2->GetA()) )
1344  {
1345  return 0;
1346  }
1347  else
1348  {
1349  return 1;
1350  }
1351 }
1352 
1353 
1354 //------------------------------------------------------------------------
1356 {
1357  std::map<G4String,G4VSolid*>::const_iterator ite;
1358  for( ite = theSolids.begin(); ite != theSolids.end(); ite++ )
1359  {
1360  if( solid == (*ite).second ) { return (*ite).first; }
1361  }
1362 
1363  if( ite == theSolids.end() )
1364  {
1365  G4Exception("G4tgbGeometryDumper::FindSolidName()", "ReadError",
1366  FatalException, "Programming error.");
1367  }
1368  return (*ite).first;
1369 }
G4ThreeVector GetSymAxis() const
G4double GetSPhi() const
G4double GetPressure() const
Definition: G4Material.hh:183
size_t GetNumberOfIsotopes() const
Definition: G4Element.hh:158
Definition: geomdefs.hh:54
G4PolyconeSideRZ GetCorner(G4int index) const
G4String GetName() const
G4double GetXHalfLength4() const
G4IonisParamMat * GetIonisation() const
Definition: G4Material.hh:226
G4double GetXHalfLength() const
G4double GetA() const
Definition: G4Isotope.hh:97
G4double GetOuterStereo() const
G4String SupressRefl(G4String name)
Definition: G4Para.hh:77
G4double GetX1HalfLength() const
Definition: G4TwistedTrd.hh:77
G4String symbol
Definition: TRTMaterials.hh:40
virtual G4Material * ComputeMaterial(const G4int repNo, G4VPhysicalVolume *currentVol, const G4VTouchable *parentTouch=0)
G4double GetZ() const
Definition: G4Material.cc:632
std::vector< G4Isotope * > G4IsotopeVector
G4double GetY1HalfLength() const
Definition: G4TwistedTrd.hh:79
G4double GetPolarAngleTheta() const
const G4String & GetName() const
Definition: G4Isotope.hh:88
G4double GetYHalfLength2() const
const G4ThreeVector & GetTranslation() const
std::vector< G4Element * > G4ElementVector
G4double GetYHalfLength1() const
G4double GetInnerStereo() const
G4String GetName() const
G4double GetDy() const
CLHEP::Hep3Vector G4ThreeVector
G4double GetInnerRadius() const
CLHEP::HepRotation G4RotationMatrix
virtual void GetReplicationData(EAxis &axis, G4int &nReplicas, G4double &width, G4double &offset, G4bool &consuming) const
Definition: G4PVReplica.cc:235
void DumpIsotope(G4Isotope *ele)
virtual G4bool IsReplicated() const =0
G4String DumpMaterial(G4Material *mat)
const G4String & FindSolidName(G4VSolid *solid)
G4String LookForExistingRotation(const G4RotationMatrix *rotm)
G4State
Definition: G4Material.hh:114
G4int first(char) const
G4Material * GetMaterial() const
Definition: G4Box.hh:64
const G4String & GetSymbol() const
Definition: G4Element.hh:128
G4int GetNumRZCorner() const
virtual G4VSolid * ComputeSolid(const G4int, G4VPhysicalVolume *)
G4String name
Definition: TRTMaterials.hh:40
void DumpSolidParams(G4VSolid *so)
G4double GetZTopCut() const
G4double GetZHalfLength() const
Definition: G4Tubs.hh:85
G4double GetSurfaceTolerance() const
G4double GetZ() const
Definition: G4Element.hh:131
G4double GetZHalfLength() const
std::map< G4String, G4Material * > theMaterials
G4double GetDensity() const
Definition: G4Material.hh:180
G4double GetRmax() const
static G4String ConvertToString(G4bool boolVal)
Definition: G4UIcommand.cc:371
#define width
G4double GetZBottomCut() const
std::map< G4String, G4Element * > theElements
G4double GetOuterRadiusMinusZ() const
Definition: G4Trd.hh:72
G4double GetX2HalfLength() const
Definition: G4TwistedTrd.hh:78
G4double GetInnerRadius() const
virtual G4GeometryType GetEntityType() const =0
#define G4ThreadLocal
Definition: tls.hh:89
G4double GetZHalfLength() const
G4double GetA() const
Definition: G4Element.hh:138
G4double GetDeltaPhiAngle() const
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:190
int G4int
Definition: G4Types.hh:78
CLHEP::HepRep3x3 G4Rep3x3
G4double GetZHalfLength() const
G4double GetSemiAxisMax(G4int i) const
G4bool IsReflected(G4LogicalVolume *lv) const
G4ThreeVector GetObjectTranslation() const
G4double GetXHalfLength2() const
std::map< G4String, G4LogicalVolume * > theLogVols
static G4ReflectionFactory * Instance()
static G4ThreadLocal G4tgbGeometryDumper * theInstance
G4double GetZHalfLength() const
Definition: G4TwistedTrd.hh:81
G4double GetRtor() const
G4double GetZHalfLength() const
Definition: G4TwistedBox.hh:75
std::vector< G4VPhysicalVolume * > GetPVChildren(G4LogicalVolume *lv)
void DumpPVReplica(G4PVReplica *pv, const G4String &lvName)
G4double GetEndPhi() const
G4double GetTanAlpha2() const
G4int GetNumRZCorner() const
void DumpPhysVol(G4VPhysicalVolume *pv)
G4double GetPhiTwist() const
G4bool CheckIfLogVolExists(const G4String &name, G4LogicalVolume *pt)
static G4PhysicalVolumeStore * GetInstance()
G4double GetY1HalfLength() const
G4double GetXHalfLength2() const
G4double GetRadius() const
G4double density
Definition: TRTMaterials.hh:39
void DumpGeometry(const G4String &fname)
G4bool Same2G4Isotopes(G4Isotope *ele1, G4Isotope *ele2)
std::map< G4String, G4VSolid * > theSolids
G4int GetNumSide() const
G4String AddQuotes(const G4String &str)
G4VPVParameterisation * GetParameterisation() const
G4double GetXHalfLength1() const
G4double GetDz() const
G4int GetN() const
Definition: G4Isotope.hh:94
G4GLOB_DLL std::ostream G4cout
G4double GetDeltaPhiAngle() const
G4double GetStartThetaAngle() const
G4double GetRmin() const
const G4String & GetName() const
G4double GetXHalfLength3() const
static G4int GetVerboseLevel()
static const double deg
Definition: G4SIunits.hh:133
Definition: G4Hype.hh:67
bool G4bool
Definition: G4Types.hh:79
G4double GetY2HalfLength() const
Definition: G4TwistedTrd.hh:80
G4String GetTGSolidType(const G4String &solidtype)
Definition: G4Cons.hh:83
#define FALSE
Definition: globals.hh:52
G4String GetObjectName(TYP *obj, std::map< G4String, TYP * > objectsDumped)
G4double GetX3HalfLength() const
G4double GetPhiTwist() const
Definition: G4TwistedTrd.hh:82
static const double cm3
Definition: G4SIunits.hh:108
G4double GetDPhi() const
G4double * GetRelativeAbundanceVector() const
Definition: G4Element.hh:166
G4double GetYHalfLength() const
#define TRUE
Definition: globals.hh:55
G4double GetStartPhiAngle() const
G4double GetYHalfLength2() const
G4double GetOuterRadius() const
G4double GetStartPhiAngle() const
G4double GetStartPhi() const
G4double GetInnerRadiusPlusZ() const
G4LogicalVolume * GetMotherLogical() const
G4double GetDPhi() const
G4bool CheckIfPhysVolExists(const G4String &name, G4VPhysicalVolume *)
G4double GetInnerRadius() const
G4PolyconeHistorical * GetOriginalParameters() const
G4double GetStartPhi() const
G4double GetDx() const
Definition: G4Orb.hh:61
G4VSolid * GetConstituentMovedSolid() const
G4double GetXHalfLength() const
G4double GetInnerRadius() const
G4double approxTo0(G4double val)
virtual const G4VSolid * GetConstituentSolid(G4int no) const
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
static const double kelvin
Definition: G4SIunits.hh:260
virtual G4bool IsParameterised() const =0
G4double GetA() const
Definition: G4Material.cc:645
virtual void ComputeDimensions(G4Box &, const G4int, const G4VPhysicalVolume *) const
G4double GetX4HalfLength() const
G4int GetZ() const
Definition: G4Isotope.hh:91
std::map< G4String, G4Isotope * > theIsotopes
void DumpPVPlacement(G4VPhysicalVolume *pv, const G4String &lvName, G4int copyNo=-999)
G4double GetYHalfLength() const
Definition: G4TwistedBox.hh:74
static const double eV
Definition: G4SIunits.hh:194
G4IsotopeVector * GetIsotopeVector() const
Definition: G4Element.hh:162
G4String SubstituteRefl(G4String name)
G4String DumpRotationMatrix(G4RotationMatrix *rotm)
G4double GetZHalfLength() const
G4LogicalVolume * GetLogicalVolume() const
std::map< G4String, G4VPhysicalVolume * > thePhysVols
G4double GetTanAlpha() const
void DumpBooleanVolume(const G4String &solidType, G4VSolid *so)
static G4tgbGeometryDumper * GetInstance()
void GetReplicationData(EAxis &axis, G4int &nReplicas, G4double &width, G4double &offset, G4bool &consuming) const
G4VSolid * GetConstituentMovedSolid() const
std::vector< G4double > GetSolidParams(const G4VSolid *so)
static const double g
Definition: G4SIunits.hh:162
void DumpPVParameterised(G4PVParameterised *pv)
EAxis
Definition: geomdefs.hh:54
G4VPhysicalVolume * GetTopPhysVol()
virtual void ComputeTransformation(const G4int, G4VPhysicalVolume *) const =0
virtual G4int GetCopyNo() const =0
static const G4double ele
static const double atmosphere
Definition: G4SIunits.hh:216
const G4RotationMatrix * GetRotation() const
G4PolyhedraHistorical * GetOriginalParameters() const
G4double GetZHalfLength() const
G4double GetZHalfLength() const
G4String GetIsotopeName(G4Isotope *)
G4ThreeVector GetSymAxis() const
G4double MatDeterminant(G4RotationMatrix *ro)
G4double GetZHalfLength() const
static const double mole
Definition: G4SIunits.hh:265
G4double GetMeanExcitationEnergy() const
G4double GetAzimuthalAnglePhi() const
G4double GetTemperature() const
Definition: G4Material.hh:182
G4double GetStartPhi() const
#define G4endl
Definition: G4ios.hh:61
G4double GetXHalfLength1() const
size_t GetNumberOfElements() const
Definition: G4Material.hh:186
G4double GetOuterRadius() const
G4double GetStartPhiAngle() const
G4PolyhedraSideRZ GetCorner(const G4int index) const
G4double GetYHalfLength1() const
G4String DumpSolid(G4VSolid *solid, const G4String &extraName="")
G4State GetState() const
Definition: G4Material.hh:181
double G4double
Definition: G4Types.hh:76
G4double GetPhiTwist() const
Definition: G4TwistedBox.hh:76
Definition: geomdefs.hh:54
std::map< G4String, G4RotationMatrix * > theRotMats
G4double GetInnerRadiusMinusZ() const
G4double GetTanAlpha1() const
const G4double * GetFractionVector() const
Definition: G4Material.hh:194
G4int GetNumRZCorner() const
G4double GetDeltaThetaAngle() const
G4PolyconeSideRZ GetCorner(G4int index) const
G4double GetX1HalfLength() const
G4double GetTiltAngleAlpha() const
G4double GetX2HalfLength() const
G4double GetOuterRadiusPlusZ() const
G4double GetZHalfLength() const
G4double GetOuterRadius() const
G4double GetXHalfLength() const
Definition: G4TwistedBox.hh:73
static const G4double pos
static G4GeometryTolerance * GetInstance()
G4double GetPhiTwist() const
G4VSolid * GetSolid() const
G4double GetOuterRadius() const
G4GLOB_DLL std::ostream G4cerr
G4String DumpLogVol(G4LogicalVolume *lv, G4String extraName="", G4VSolid *solid=0, G4Material *mate=0)
G4double GetY2HalfLength() const
void DumpElement(G4Element *ele)
G4double GetDeltaPhiAngle() const
G4double GetYHalfLength() const