Geant4  10.01.p02
G4EvaporationChannel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4EvaporationChannel.cc 85841 2014-11-05 15:35:06Z gcosmo $
27 //
28 //J.M. Quesada (August2008). Based on:
29 //
30 // Hadronic Process: Nuclear De-excitations
31 // by V. Lara (Oct 1998)
32 //
33 // Modified:
34 // 03-09-2008 J.M. Quesada for external choice of inverse cross section option
35 // 06-09-2008 J.M. Quesada Also external choices have been added for superimposed
36 // Coulomb barrier (if useSICB is set true, by default is false)
37 // 17-11-2010 V.Ivanchenko in constructor replace G4VEmissionProbability by
38 // G4EvaporationProbability and do not new and delete probability
39 // object at each call; use G4Pow
40 
41 #include "G4EvaporationChannel.hh"
42 #include "G4PairingCorrection.hh"
43 #include "G4NucleiProperties.hh"
44 #include "G4Pow.hh"
45 #include "G4Log.hh"
46 #include "G4Exp.hh"
48 #include "G4PhysicalConstants.hh"
49 #include "G4SystemOfUnits.hh"
50 #include "Randomize.hh"
51 #include "G4Alpha.hh"
52 
54  const G4String & aName,
55  G4EvaporationProbability* aEmissionStrategy,
56  G4VCoulombBarrier* aCoulombBarrier):
57  G4VEvaporationChannel(aName),
58  theA(anA),
59  theZ(aZ),
60  theEvaporationProbabilityPtr(aEmissionStrategy),
61  theCoulombBarrierPtr(aCoulombBarrier),
62  EmissionProbability(0.0),
63  MaximalKineticEnergy(-1000.0)
64 {
65  ResidualA = 0;
66  ResidualZ = 0;
71 }
72 
74 {
75  delete theLevelDensityPtr;
76 }
77 
79 {
80  //for inverse cross section choice
82  // for superimposed Coulomb Barrier for inverse cross sections
84 
86 }
87 
89 {
90  G4int FragmentA = fragment->GetA_asInt();
91  G4int FragmentZ = fragment->GetZ_asInt();
92  ResidualA = FragmentA - theA;
93  ResidualZ = FragmentZ - theZ;
94  //G4cout << "G4EvaporationChannel::Initialize Z= " << theZ << " A= " << theA
95  // << " FragZ= " << FragmentZ << " FragA= " << FragmentA << G4endl;
96  EmissionProbability = 0.0;
97 
98  // Only channels which are physically allowed are taken into account
99  if (ResidualA >= ResidualZ && ResidualZ > 0 && ResidualA >= theA) {
100 
101  //Effective excitation energy
102  G4double ExEnergy = fragment->GetExcitationEnergy() -
103  pairingCorrection->GetPairingCorrection(FragmentA,FragmentZ);
105  G4double FragmentMass = fragment->GetGroundStateMass();
106  G4double Etot = FragmentMass + ExEnergy;
107 
108  if(ExEnergy > 0.0 && Etot > ResidualMass + EvaporatedMass) {
109 
110  // Maximal Kinetic Energy
113 
114  // Emission probability
115  // Protection for the case Tmax<V. If not set in this way we could end up in an
116  // infinite loop in the method GetKineticEnergy if OPTxs!=0 && useSICB=true.
117  // Of course for OPTxs=0 we have the Coulomb barrier
118 
119  CoulombBarrier = 0.0;
120  if (OPTxs==0 || (OPTxs!=0 && useSICB)) {
121  CoulombBarrier =
123  }
124  // The threshold for charged particle emission must be set to 0 if Coulomb
125  //cutoff is included in the cross sections
129  }
130  }
131  }
132  //G4cout << "G4EvaporationChannel:: probability= " << EmissionProbability << G4endl;
133  return EmissionProbability;
134 }
135 
137 {
138  G4Fragment* evFragment = 0;
139  G4double evEnergy = SampleKineticEnergy(*theNucleus) + EvaporatedMass;
140 
142  (std::sqrt((evEnergy - EvaporatedMass)*(evEnergy + EvaporatedMass))));
143 
144  G4LorentzVector EvaporatedMomentum(momentum, evEnergy);
145  G4LorentzVector ResidualMomentum = theNucleus->GetMomentum();
146  EvaporatedMomentum.boost(ResidualMomentum.boostVector());
147 
148  evFragment = new G4Fragment(theA,theZ,EvaporatedMomentum);
149  ResidualMomentum -= EvaporatedMomentum;
150  theNucleus->SetZandA_asInt(ResidualZ, ResidualA);
151  theNucleus->SetMomentum(ResidualMomentum);
152 
153  return evFragment;
154 }
155 
157 {
158  G4FragmentVector * theResult = new G4FragmentVector();
159  G4Fragment* frag0 = new G4Fragment(theNucleus);
160  G4Fragment* frag1 = EmittedFragment(frag0);
161  if(frag1) { theResult->push_back(frag1); }
162  theResult->push_back(frag0);
163  return theResult;
164 }
165 
167 //JMQ: New method for MC sampling of kinetic energy.
169 {
170  G4double T = 0.0;
171  if (OPTxs==0) {
172  // It uses Dostrovsky's approximation for the inverse reaction cross
173  // in the probability for fragment emission
174  // MaximalKineticEnergy energy in the original version (V.Lara) was calculated at
175  //the Coulomb barrier.
176 
177  G4double Rb = 4.0*theLevelDensityPtr->
178  LevelDensityParameter(ResidualA+theA,ResidualZ+theZ,MaximalKineticEnergy)*
180  G4double RbSqrt = std::sqrt(Rb);
181  G4double PEX1 = 0.0;
182  if (RbSqrt < 160.0) PEX1 = G4Exp(-RbSqrt);
183  G4double Rk = 0.0;
184  G4double FRk = 0.0;
185  do {
186  G4double RandNumber = G4UniformRand();
187  Rk = 1.0 + (1./RbSqrt)*G4Log(RandNumber + (1.0-RandNumber)*PEX1);
188  G4double Q1 = 1.0;
189  G4double Q2 = 1.0;
190  if (theZ == 0) { // for emitted neutron
191  G4double Beta = (2.12/G4Pow::GetInstance()->Z23(ResidualA) - 0.05)*MeV/
192  (0.76 + 2.2/G4Pow::GetInstance()->Z13(ResidualA));
193  Q1 = 1.0 + Beta/(MaximalKineticEnergy);
194  Q2 = Q1*std::sqrt(Q1);
195  }
196 
197  FRk = (3.0*std::sqrt(3.0)/2.0)/Q2 * Rk * (Q1 - Rk*Rk);
198 
199  } while (FRk < G4UniformRand());
200 
201  T = MaximalKineticEnergy * (1.0-Rk*Rk) + CoulombBarrier;
202 
203  } else {
204  // Coulomb barrier is just included in the cross sections
205  G4double prob;
206  do {
209  } while (EmissionProbability*G4UniformRand() >= prob);
210  }
211  return T;
212 }
213 
215  // Samples a isotropic random vectorwith a magnitud given by Magnitude.
216  // By default Magnitude = 1.0
217 {
218  G4double CosTheta = 1.0 - 2.0*G4UniformRand();
219  G4double SinTheta = std::sqrt(1.0 - CosTheta*CosTheta);
220  G4double Phi = twopi*G4UniformRand();
221  G4ThreeVector Vector(Magnitude*std::cos(Phi)*SinTheta,
222  Magnitude*std::sin(Phi)*SinTheta,
223  Magnitude*CosTheta);
224  return Vector;
225 }
static G4Pow * GetInstance()
Definition: G4Pow.cc:55
static const double MeV
Definition: G4SIunits.hh:193
static G4double GetNuclearMass(const G4double A, const G4double Z)
CLHEP::Hep3Vector G4ThreeVector
G4double SampleKineticEnergy(const G4Fragment &aFragment)
G4VCoulombBarrier * theCoulombBarrierPtr
G4EvaporationProbability * theEvaporationProbabilityPtr
virtual G4Fragment * EmittedFragment(G4Fragment *theNucleus)
virtual G4double GetEmissionProbability(G4Fragment *fragment)
int G4int
Definition: G4Types.hh:78
G4double ProbabilityDistributionFunction(const G4Fragment &aFragment, G4double K)
G4VLevelDensityParameter * theLevelDensityPtr
#define G4UniformRand()
Definition: Randomize.hh:93
G4double Z13(G4int Z) const
Definition: G4Pow.hh:127
G4int GetA_asInt() const
Definition: G4Fragment.hh:243
G4PairingCorrection * pairingCorrection
const G4LorentzVector & GetMomentum() const
Definition: G4Fragment.hh:276
void SetMomentum(const G4LorentzVector &value)
Definition: G4Fragment.hh:281
G4double GetPairingCorrection(G4int A, G4int Z) const
std::vector< G4Fragment * > G4FragmentVector
Definition: G4Fragment.hh:65
G4double GetGroundStateMass() const
Definition: G4Fragment.hh:265
G4double G4Log(G4double x)
Definition: G4Log.hh:230
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
static G4PairingCorrection * GetInstance()
G4EvaporationChannel(G4int theA, G4int theZ, const G4String &aName, G4EvaporationProbability *aEmissionStrategy, G4VCoulombBarrier *aCoulombBarrier)
void SetZandA_asInt(G4int Znew, G4int Anew)
Definition: G4Fragment.hh:253
virtual G4FragmentVector * BreakUp(const G4Fragment &theNucleus)
G4int GetZ_asInt() const
Definition: G4Fragment.hh:248
G4double Z23(G4int Z) const
Definition: G4Pow.hh:151
virtual G4double GetCoulombBarrier(G4int ARes, G4int ZRes, G4double U) const =0
G4ThreeVector IsotropicVector(G4double Magnitude=1.0)
double G4double
Definition: G4Types.hh:76
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:260
CLHEP::HepLorentzVector G4LorentzVector