93  "G4ScreenedNuclearRecoil.cc,v 1.57 2008/05/07 11:51:26 marcus Exp GEANT4 tag ";
 
  138   0, 1.007940, 4.002602, 6.941000, 9.012182, 10.811000, 12.010700, 
 
  139   14.006700, 15.999400, 18.998403, 20.179700, 22.989770, 24.305000, 26.981538, 
 
  141   30.973761, 32.065000, 35.453000, 39.948000, 39.098300, 40.078000, 44.955910, 
 
  143   50.941500, 51.996100, 54.938049, 55.845000, 58.933200, 58.693400, 63.546000, 
 
  145   69.723000, 72.640000, 74.921600, 78.960000, 79.904000, 83.798000, 85.467800, 
 
  147   88.905850, 91.224000, 92.906380, 95.940000, 98.000000, 101.070000, 102.905500,
 
  149   107.868200, 112.411000, 114.818000, 118.710000, 121.760000, 127.600000, 
 
  150   126.904470, 131.293000, 
 
  151   132.905450, 137.327000, 138.905500, 140.116000, 140.907650, 144.240000, 
 
  152   145.000000, 150.360000, 
 
  153   151.964000, 157.250000, 158.925340, 162.500000, 164.930320, 167.259000, 
 
  154   168.934210, 173.040000, 
 
  155   174.967000, 178.490000, 180.947900, 183.840000, 186.207000, 190.230000, 
 
  156   192.217000, 195.078000, 
 
  157   196.966550, 200.590000, 204.383300, 207.200000, 208.980380, 209.000000, 
 
  158   210.000000, 222.000000, 
 
  159   223.000000, 226.000000, 227.000000, 232.038100, 231.035880, 238.028910, 
 
  160   237.000000, 244.000000, 
 
  161   243.000000, 247.000000, 247.000000, 251.000000, 252.000000, 257.000000, 
 
  162   258.000000, 259.000000, 
 
  163   262.000000, 261.000000, 262.000000, 266.000000, 264.000000, 277.000000, 
 
  164   268.000000, 281.000000, 
 
  165   272.000000, 285.000000, 282.500000, 289.000000, 287.500000, 292.000000};
 
  180         if (nMatElements == 1)
 
  182                 element= (*elementVector)[0];
 
  191                 for (
G4int k=0 ; k < nMatElements ; k++ )
 
  193                         nsum+=atomDensities[k];
 
  194                         element= (*elementVector)[k];
 
  195                         if (nsum >= random) 
break;
 
  214             for(
G4int i=0; i<nIsotopes; i++) {
 
  217               if(asum >= random) 
break;
 
  221             N=(
G4int)std::floor(element->
GetN()+0.5);
 
  229                 for(i=0; i<nIsotopes; i++) {
 
  231                         N=(*isoV)[i]->GetN();
 
  232                         if(asum >= random) 
break;
 
  239         ParticleCache::iterator p=
targetMap.find(Z*1000+N);
 
  251         const G4int nmfpvals=200;
 
  253         std::vector<G4double> evals(nmfpvals), mfpvals(nmfpvals);
 
  257         if (materialTable == 0) { 
return; }
 
  263         for (
G4int matidx=0; matidx < nMaterials; matidx++) {
 
  265           const G4Material* material= (*materialTable)[matidx];
 
  275           for (
G4int kel=0 ; kel < nMatElements ; kel++ )
 
  277                         element=elementVector[kel];
 
  280                         if(!kel || ifunc.
xmin() > emin) emin=ifunc.
xmin();
 
  281                         if(!kel || ifunc.
xmax() < emax) emax=ifunc.
xmax();
 
  284           G4double logint=std::log(emax/emin) / (nmfpvals-1) ; 
 
  289           for (
G4int i=1; i<nmfpvals-1; i++) evals[i]=emin*std::exp(logint*i);
 
  294           for (
G4int eidx=0; eidx < nmfpvals; eidx++) mfpvals[eidx] = 0.0; 
 
  298           for (
G4int kel=0 ; kel < nMatElements ; kel++ )
 
  300               element=elementVector[kel];
 
  303               G4double ndens = atomDensities[kel]; 
 
  306               for (
G4int eidx=0; eidx < nmfpvals; eidx++) {
 
  307                 mfpvals[eidx] += ndens*sigma(evals[eidx]);
 
  312           for (
G4int eidx=0; eidx < nmfpvals; eidx++) {
 
  313             mfpvals[eidx] = 1.0/mfpvals[eidx];
 
  317                               mfpvals,
true,0,
true,0);
 
  327         screeningKey(ScreeningKey),
 
  328         generateRecoils(GenerateRecoils), avoidReactions(1), 
 
  329         recoilCutoff(RecoilCutoff), physicsCutoff(PhysicsCutoff),
 
  330         hardeningFraction(0.0), hardeningFactor(1.0),
 
  331         externalCrossSectionConstructor(0),
 
  353   std::map<G4int, G4ScreenedCoulombCrossSection*>::iterator xt=
 
  403                                           std::pow(a1,1.0/3.0)) + 1.4)*
fermi);
 
  442         std::map<G4int, G4ScreenedCoulombCrossSection*>::iterator xh=
 
  450         } 
else xs=(*xh).second;
 
  503                 G4double lattice=0.5/std::pow(numberDensity,1.0/3.0); 
 
  518                 if(sigopi < lattice*lattice) { 
 
  539     printf(
"ScreenedNuclear impact reject: length=%.3f P=%.4f limit=%.4f\n",
 
  565         std::vector<G4ScreenedCollisionStage *>::iterator stage=
 
  569                 (*stage)->DoCollisionStep(
this,aTrack, aStep);
 
  587   phifunc(c2.const_plugin_function()),
 
  588   xovereps(c2.linear(0., 0., 0.)), 
 
  590   diff(c2.quadratic(0., 0., 0., 1.)-xovereps*phifunc)
 
  606     G4double mlrho4=((((3.517e-4*y+1.401e-2)*y+2.393e-1)*y+2.734)*y+2.220);
 
  609     xx0=std::sqrt(bb2+std::sqrt(bb2*bb2+rho4)); 
 
  612     xx0=ee+std::sqrt(ee*ee+beta*beta); 
 
  627                       &root_error, &phip, &phip2)/au; 
 
  630                 G4cout << 
"Screened Coulomb Root Finder Error" << 
G4endl;
 
  631                 G4cout << 
"au " << au << 
" A " << A << 
" a1 " << a1 
 
  632                        << 
" xx1 " << xx1 << 
" eps " << eps 
 
  633                        << 
" beta " << beta << 
G4endl;
 
  640                        <<  
" target " <<  beta*beta*au*au ;
 
  650         G4double lambda0=1.0/std::sqrt(0.5+beta*beta/(2.0*xx1*xx1)
 
  651                                        -phiprime/(2.0*eps));
 
  658         G4double xvals[]={0.98302349, 0.84652241, 0.53235309, 0.18347974};
 
  659         G4double weights[]={0.03472124, 0.14769029, 0.23485003, 0.18602489};
 
  660         for(
G4int k=0; k<4; k++) {
 
  663                 ff=1.0/std::sqrt(1.0-
phifunc(x*au)/(x*eps)-beta*beta/(x*x));
 
  664                 alpha+=weights[k]*ff;
 
  672         G4double sintheta=std::sin(thetac1); 
 
  673         G4double costheta=-std::cos(thetac1); 
 
  682         G4double zeta=std::atan2(sintheta, 1-costheta); 
 
  739         if(incidentEnergy-eRecoil < master->GetRecoilCutoff()*
a1) {
 
  742                                       incidentEnergy-eRecoil);
 
  774         recoilMomentumDirection=
 
  775           recoilMomentumDirection.rotateUz(incidentDirection);
 
  777           recoilMomentumDirection*std::sqrt(2.0*eRecoil*kin.
a2*amu_c2);
 
  790                                 recoilMomentumDirection,eRecoil) ;
 
  810   if(nam == 
"GenericIon" || nam == 
"proton"  
  811      || nam == 
"deuteron" || nam == 
"triton"  
  812      || nam == 
"alpha" || nam == 
"He3") {
 
  840         static const size_t ncoef=4;
 
  841         static G4double scales[ncoef]={-3.2, -0.9432, -0.4028, -0.2016};
 
  842         static G4double coefs[ncoef]={0.1818,0.5099,0.2802,0.0281};
 
  845           0.8854*
angstrom*0.529/(std::pow(z1, 0.23)+std::pow(z2,0.23));
 
  846         std::vector<G4double> r(npoints), phi(npoints);
 
  848         for(
size_t i=0; i<npoints; i++) {
 
  849                 G4double rr=(float)i/(
float)(npoints-1);
 
  853                 for(
size_t j=0; j<ncoef; j++) 
 
  854                   sum+=coefs[j]*std::exp(scales[j]*r[i]/au);
 
  860         for(
size_t j=0; j<ncoef; j++) 
 
  861           phiprime0+=scales[j]*coefs[j]*std::exp(scales[j]*r[0]/au);
 
  872         static const size_t ncoef=3;
 
  873         static G4double scales[ncoef]={-6.0, -1.2, -0.3};
 
  874         static G4double coefs[ncoef]={0.10, 0.55, 0.35};
 
  877                                                     +std::pow(z2,0.6667));
 
  878         std::vector<G4double> r(npoints), phi(npoints);
 
  880         for(
size_t i=0; i<npoints; i++) {
 
  881                 G4double rr=(float)i/(
float)(npoints-1);
 
  885                 for(
size_t j=0; j<ncoef; j++) 
 
  886                   sum+=coefs[j]*std::exp(scales[j]*r[i]/au);
 
  892         for(
size_t j=0; j<ncoef; j++) 
 
  893           phiprime0+=scales[j]*coefs[j]*std::exp(scales[j]*r[0]/au);
 
  907                                                     +std::pow(z2,0.6667));
 
  908         std::vector<G4double> r(npoints), phi(npoints);
 
  910         for(
size_t i=0; i<npoints; i++) {
 
  911                 G4double rr=(float)i/(
float)(npoints-1);
 
  917                 G4double phipoly=1+y+0.3344*ysq+0.0485*y*ysq+0.002647*ysq*ysq;
 
  918                 phi[i]=phipoly*std::exp(-y);
 
  923         G4double logphiprime0=(9.67/2.0)*(2*0.3344-1.0); 
 
  925         logphiprime0 *= (1.0/au); 
 
  971 std::vector<G4String> 
 
  973   std::vector<G4String> keys;
 
  975   std::map<std::string, ScreeningFunc>::const_iterator sfunciter=
phiMap.begin();
 
  976   for(; sfunciter != 
phiMap.end(); sfunciter++) 
 
  977     keys.push_back((*sfunciter).first);
 
  983         G4double m1=a1*amu_c2, mass2=a2*amu_c2;
 
  990         return mc2*f/(std::sqrt(1.0+f)+1.0); 
 
  994         G4double s2th2=eratio*( (m1+mass2)*(m1+mass2)/(4.0*m1*mass2) );
 
  996         return 2.0*std::asin(sth2);
 
 1003         static const size_t sigLen=200; 
 
 1012         if (materialTable == 0) { 
return; }
 
 1017         for (
G4int im=0; im<nMaterials; im++)
 
 1019             const G4Material* material= (*materialTable)[im];
 
 1023             for (
G4int iEl=0; iEl<nMatElements; iEl++)
 
 1025                 G4Element* element = (*elementVector)[iEl];
 
 1033                 std::map<std::string, ScreeningFunc>::iterator sfunciter=
 
 1034                   phiMap.find(screeningKey);
 
 1035                 if(sfunciter==
phiMap.end()) {
 
 1037                   ed << 
"No such screening key <"  
 1038                      << screeningKey << 
">"; 
 
 1039                   G4Exception(
"G4NativeScreenedCoulombCrossSection::LoadData",
 
 1071                 x0func->set_domain(1e-6*
angstrom/au, 0.9999*screen->
xmax()/au); 
 
 1079                 G4double escale=z1*Z*elm_coupling/au; 
 
 1090                   G4cout << 
"Native Screening: " << screeningKey << 
" "  
 1091                          << z1 << 
" " << a1 << 
" " << 
 
 1092                     Z << 
" " << a2 << 
" " << recoilCutoff << 
G4endl;
 
 1094                 for(
size_t idx=0; idx<sigLen; idx++) {
 
 1095                   G4double ee=std::exp(idx*((l1-l0)/sigLen)+l0);
 
 1104                   c2eps.
reset(0.0, 0.0, eps); 
 
 1118                     x0=x0_solution(2*q-q*q);
 
size_t GetNumberOfIsotopes() const 
G4ParticleDefinition * GetDefinition() const 
virtual void Initialize(const G4Track &)
static c2_factory< G4double > c2
G4_c2_const_ptr EMphiData
std::vector< G4String > GetScreeningKeys() const 
std::vector< G4Isotope * > G4IsotopeVector
static lin_log_interpolating_function_p< float_type > & lin_log_interpolating_function()
make a *new object 
G4CoulombKinematicsInfo kinematics
G4double GetCurrentInteractionLength() const 
the the interaciton length used in the last scattering. 
std::vector< G4Element * > G4ElementVector
std::ostringstream G4ExceptionDescription
void AddStage(G4ScreenedCollisionStage *stage)
virtual void LoadData(G4String screeningKey, G4int z1, G4double m1, G4double recoilCutoff)=0
G4double GetKineticEnergy() const 
CLHEP::Hep3Vector G4ThreeVector
G4bool GetValidCollision() const 
const G4DynamicParticle * GetDynamicParticle() const 
G4double highEnergyLimit
the energy per nucleon above which the MFP is constant 
virtual void DoCollisionStep(class G4ScreenedNuclearRecoil *master, const class G4Track &aTrack, const class G4Step &aStep)
Definition of the G4ScreenedNuclearRecoil class. 
G4ParticleDefinition * recoilIon
G4CoulombKinematicsInfo & GetKinematics()
G4int GetFirstIsotope(G4int Z)
virtual void DumpPhysicsTable(const G4ParticleDefinition &aParticleType)
Export physics tables for persistency. Not Implemented. 
G4double GetRecoilCutoff() const 
get the recoil cutoff 
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
static G4MaterialTable * GetMaterialTable()
G4ScreenedNuclearRecoil(const G4String &processName="ScreenedElastic", const G4String &ScreeningKey="zbl", G4bool GenerateRecoils=1, G4double RecoilCutoff=100.0 *CLHEP::eV, G4double PhysicsCutoff=10.0 *CLHEP::eV)
Construct the process and set some physics parameters for it. 
const G4MaterialCutsCouple * GetMaterialCutsCouple() const 
const G4VNIELPartition * NIELPartitionFunction
std::vector< G4Material * > G4MaterialTable
G4_c2_function & LJScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval)
static const G4double massmap[nMassMapElements+1]
static const G4double eps
virtual G4double GetMeanFreePath(const G4Track &, G4double, G4ForceCondition *)
used internally by Geant4 machinery 
void DepositEnergy(G4int z1, G4double a1, const G4Material *material, G4double energy)
take the given energy, and use the material information to partition it into NIEL and ionizing energy...
G4ParticleDefinition * GetDefinition() const 
void BuildMFPTables(void)
virtual ~G4NativeScreenedCoulombCrossSection()
void set_function(const c2_function< float_type > *f)
fill the container with a new function, or clear it with a null pointer 
G4_c2_function & MoliereScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval)
const G4ElementVector * GetElementVector() const 
virtual void BuildPhysicsTable(const G4ParticleDefinition &aParticleType)
Build physics tables in advance. Not Implemented. 
const G4String & GetParticleName() const 
std::vector< G4ScreenedCollisionStage * > collisionStages
std::map< std::string, ScreeningFunc > phiMap
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
c2_const_plugin_function_p< G4double > & phifunc
G4ScreenedCoulombCrossSection * externalCrossSectionConstructor
static c2_connector_function_p< float_type > & connector_function(float_type x0, const c2_function< float_type > &f0, float_type x2, const c2_function< float_type > &f2, bool auto_center, float_type y1)
make a *new object 
const G4double * GetVecNbOfAtomsPerVolume() const 
static G4double thetac(G4double m1, G4double mass2, G4double eratio)
G4GLOB_DLL std::ostream G4cout
G4ScreenedCoulombCrossSection * crossSection
void reset(float_type x0, float_type y0, float_type slope)
Change the slope and intercepts after construction. 
void ProposeNonIonizingEnergyDeposit(G4double anEnergyPart)
static G4double cm_energy(G4double a1, G4double a2, G4double t0)
G4double GetHardeningFactor() const 
get the boost factor in use. 
void append_function(const c2_function< float_type > &func)
append a new function to the sequence 
std::map< G4int, G4_c2_const_ptr > MFPTables
std::map< G4int, G4ScreenedCoulombCrossSection * > crossSectionHandlers
const G4ThreeVector & GetMomentumDirection() const 
void set_domain(float_type amin, float_type amax)
set the domain for this function. 
ScreeningMap screeningData
virtual ~G4ScreenedCoulombCrossSection()
void SetValidCollision(G4bool flag)
const G4ScreeningTables * GetScreening(G4int Z)
G4ParticleDefinition * SelectRandomUnweightedTarget(const G4MaterialCutsCouple *couple)
G4NativeScreenedCoulombCrossSection()
G4double * GetRelativeAbundanceVector() const 
static G4Proton * Proton()
void SetProcessSubType(G4int)
void release_for_return()
release the function without destroying it, so it can be returned from a function ...
G4double lowEnergyLimit
the energy per nucleon below which the MFP is zero 
const G4String & GetParticleType() const 
std::map< G4int, G4_c2_const_ptr > sigmaMap
G4_c2_function & LJZBLScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval)
const c2_function< float_type > & get() const 
get a reference to our owned function 
G4bool GetEnableRecoils() const 
find out if generation of recoils is enabled. 
G4_c2_function & ZBLScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval)
static size_t GetNumberOfMaterials()
static const G4double A[nN]
const G4String & GetProcessName() const 
virtual G4bool IsApplicable(const G4ParticleDefinition &aParticleType)
test if a prticle of type aParticleType can use this process 
static G4IonTable * GetIonTable()
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
G4int GetNumberOfIsotopes(G4int Z)
the exception class for c2_function operations. 
void SetNIELPartitionFunction(const G4VNIELPartition *part)
set the pointer to a class for paritioning energy into NIEL 
virtual G4ScreenedCoulombCrossSection * create()=0
G4double GetTotNbOfAtomsPerVolume() const 
G4bool registerDepositedEnergy
float_type find_root(float_type lower_bracket, float_type upper_bracket, float_type start, float_type value, int *error=0, float_type *final_yprime=0, float_type *final_yprime2=0) const 
solve f(x)==value very efficiently, with explicit knowledge of derivatives of the function ...
G4IsotopeVector * GetIsotopeVector() const 
void SetVerbosity(G4int v)
static log_log_interpolating_function_p< float_type > & log_log_interpolating_function()
make a *new object 
G4int GetIsotopeNucleonCount(G4int number)
G4double GetPDGMass() const 
create a c2_function which is a piecewise assembly of other c2_functions.The functions must have incr...
static c2_linear_p< float_type > & linear(float_type x0, float_type y0, float_type slope)
make a *new object 
G4double standardmass(G4int z1)
T max(const T t1, const T t2)
brief Return the largest of the two arguments 
G4double energy(const ThreeVector &p, const G4double m)
void SetNumberOfSecondaries(G4int totSecondaries)
static const char * CVSFileVers()
const G4Material * targetMaterial
virtual ~G4ScreenedNuclearRecoil()
destructor 
virtual G4VParticleChange * PostStepDoIt(const G4Track &aTrack, const G4Step &aStep)
used internally by Geant4 machinery 
G4VParticleChange * pParticleChange
a factory of pre-templated c2_function generators 
virtual G4bool CheckNuclearCollision(G4double A, G4double A1, G4double apsis)
deterine if the moving particle is within the strong force range of the selected nucleus ...
void ProposeEnergy(G4double finalEnergy)
T min(const T t1, const T t2)
brief Return the smallest of the two arguments 
void AddScreeningFunction(G4String name, ScreeningFunc fn)
static c2_inverse_function_p< float_type > & inverse_function(const c2_function< float_type > &source)
make a *new object 
void AddSecondary(G4Track *aSecondary)
virtual G4ScreenedCoulombCrossSection * GetNewCrossSectionHandler(void)
G4double GetEnergy() const 
G4double GetHardeningFraction() const 
get the fraction of particles which will have boosted scattering 
size_t GetNumberOfElements() const 
G4double GetAbundance(G4int number)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
virtual void DoCollisionStep(class G4ScreenedNuclearRecoil *master, const class G4Track &aTrack, const class G4Step &aStep)
G4int GetVerboseLevel() const 
get the verbosity. 
G4_c2_function &(* ScreeningFunc)(G4int z1, G4int z2, size_t nPoints, G4double rMax, G4double *au)
static const double eplus
class G4ParticleChange & GetParticleChange()
get the pointer to our ParticleChange object. for internal use, primarily. 
G4ScreenedCoulombClassicalKinematics()
c2_linear_p< G4double > & xovereps
G4double GetPDGCharge() const 
static const G4double alpha
G4bool DoScreeningComputation(class G4ScreenedNuclearRecoil *master, const G4ScreeningTables *screen, G4double eps, G4double beta)
G4ThreeVector G4ParticleMomentum
float_type xmax() const 
return the upper bound of the domain for this function as set by set_domain() 
void ResetTables()
clear precomputed screening tables 
A process which handles screened Coulomb collisions between nuclei. 
virtual void LoadData(G4String screeningKey, G4int z1, G4double m1, G4double recoilCutoff)
G4int GetProcessSubType() const 
virtual G4double PartitionNIEL(G4int z1, G4double a1, const G4Material *material, G4double energy) const =0
void unset_function()
clear our function 
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
float_type xmin() const 
return the lower bound of the domain for this function as set by set_domain() 
static const double fermi
G4ThreeVector GetMomentum() const 
const G4Material * GetMaterial() const 
G4double processMaxEnergy
the energy per nucleon beyond which the cross section is zero, to cross over to G4MSC ...
static c2_piecewise_function_p< float_type > & piecewise_function()
make a *new object 
std::map< G4int, G4ScreenedCoulombCrossSection * > & GetCrossSectionHandlers()
static const double angstrom
Provides a factory class to avoid an infinite number of template.