Geant4  10.01.p02
trees.cc
Go to the documentation of this file.
1 /* trees.c -- output deflated data using Huffman coding
2  * Copyright (C) 1995-2012 Jean-loup Gailly
3  * detect_data_type() function provided freely by Cosmin Truta, 2006
4  * For conditions of distribution and use, see copyright notice in zlib.h
5  */
6 
7 /*
8  * ALGORITHM
9  *
10  * The "deflation" process uses several Huffman trees. The more
11  * common source values are represented by shorter bit sequences.
12  *
13  * Each code tree is stored in a compressed form which is itself
14  * a Huffman encoding of the lengths of all the code strings (in
15  * ascending order by source values). The actual code strings are
16  * reconstructed from the lengths in the inflate process, as described
17  * in the deflate specification.
18  *
19  * REFERENCES
20  *
21  * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22  * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23  *
24  * Storer, James A.
25  * Data Compression: Methods and Theory, pp. 49-50.
26  * Computer Science Press, 1988. ISBN 0-7167-8156-5.
27  *
28  * Sedgewick, R.
29  * Algorithms, p290.
30  * Addison-Wesley, 1983. ISBN 0-201-06672-6.
31  */
32 
33 /* @(#) $Id$ */
34 
35 /* #define GEN_TREES_H */
36 
37 #include "deflate.h"
38 
39 #ifdef DEBUG
40 # include <ctype.h>
41 #endif
42 
43 /* ===========================================================================
44  * Constants
45  */
46 
47 #define MAX_BL_BITS 7
48 /* Bit length codes must not exceed MAX_BL_BITS bits */
49 
50 #define END_BLOCK 256
51 /* end of block literal code */
52 
53 #define REP_3_6 16
54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
55 
56 #define REPZ_3_10 17
57 /* repeat a zero length 3-10 times (3 bits of repeat count) */
58 
59 #define REPZ_11_138 18
60 /* repeat a zero length 11-138 times (7 bits of repeat count) */
61 
62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63  = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64 
65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66  = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67 
68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69  = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70 
71 local const uch bl_order[BL_CODES]
72  = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73 /* The lengths of the bit length codes are sent in order of decreasing
74  * probability, to avoid transmitting the lengths for unused bit length codes.
75  */
76 
77 /* ===========================================================================
78  * Local data. These are initialized only once.
79  */
80 
81 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
82 
83 #if defined(GEN_TREES_H) || !defined(STDC)
84 /* non ANSI compilers may not accept trees.h */
85 
86 local ct_data static_ltree[L_CODES+2];
87 /* The static literal tree. Since the bit lengths are imposed, there is no
88  * need for the L_CODES extra codes used during heap construction. However
89  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
90  * below).
91  */
92 
93 local ct_data static_dtree[D_CODES];
94 /* The static distance tree. (Actually a trivial tree since all codes use
95  * 5 bits.)
96  */
97 
99 /* Distance codes. The first 256 values correspond to the distances
100  * 3 .. 258, the last 256 values correspond to the top 8 bits of
101  * the 15 bit distances.
102  */
103 
104 uch _length_code[MAX_MATCH-MIN_MATCH+1];
105 /* length code for each normalized match length (0 == MIN_MATCH) */
106 
107 local int base_length[LENGTH_CODES];
108 /* First normalized length for each code (0 = MIN_MATCH) */
109 
110 local int base_dist[D_CODES];
111 /* First normalized distance for each code (0 = distance of 1) */
112 
113 #else
114 # include "trees.h"
115 #endif /* GEN_TREES_H */
116 
117 struct static_tree_desc_s {
118  const ct_data *static_tree; /* static tree or NULL */
119  const intf *extra_bits; /* extra bits for each code or NULL */
120  int extra_base; /* base index for extra_bits */
121  int elems; /* max number of elements in the tree */
122  int max_length; /* max bit length for the codes */
123 };
124 
125 local static_tree_desc static_l_desc =
126 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
127 
128 local static_tree_desc static_d_desc =
129 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
130 
131 local static_tree_desc static_bl_desc =
132 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
133 
134 /* ===========================================================================
135  * Local (static) routines in this file.
136  */
137 
138 local void tr_static_init OF((void));
139 local void init_block OF((deflate_state *s));
140 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
141 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
142 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
143 local void build_tree OF((deflate_state *s, tree_desc *desc));
144 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
145 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
146 local int build_bl_tree OF((deflate_state *s));
147 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
148  int blcodes));
149 local void compress_block OF((deflate_state *s, ct_data *ltree,
150  ct_data *dtree));
151 local int detect_data_type OF((deflate_state *s));
152 local unsigned bi_reverse OF((unsigned value, int length));
153 local void bi_windup OF((deflate_state *s));
154 local void bi_flush OF((deflate_state *s));
155 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
156  int header));
157 
158 #ifdef GEN_TREES_H
159 local void gen_trees_header OF((void));
160 #endif
161 
162 #ifndef DEBUG
163 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
164  /* Send a code of the given tree. c and tree must not have side effects */
165 
166 #else /* DEBUG */
167 # define send_code(s, c, tree) \
168  { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
169  send_bits(s, tree[c].Code, tree[c].Len); }
170 #endif
171 
172 /* ===========================================================================
173  * Output a short LSB first on the stream.
174  * IN assertion: there is enough room in pendingBuf.
175  */
176 #define put_short(s, w) { \
177  put_byte(s, (uch)((w) & 0xff)); \
178  put_byte(s, (uch)((ush)(w) >> 8)); \
179 }
180 
181 /* ===========================================================================
182  * Send a value on a given number of bits.
183  * IN assertion: length <= 16 and value fits in length bits.
184  */
185 #ifdef DEBUG
186 local void send_bits OF((deflate_state *s, int value, int length));
187 
188 local void send_bits(deflate_state *s,int value,int length)
189 {
190  Tracevv((stderr," l %2d v %4x ", length, value));
191  Assert(length > 0 && length <= 15, "invalid length");
192  s->bits_sent += (ulg)length;
193 
194  /* If not enough room in bi_buf, use (valid) bits from bi_buf and
195  * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
196  * unused bits in value.
197  */
198  if (s->bi_valid > (int)Buf_size - length) {
199  s->bi_buf |= (ush)value << s->bi_valid;
200  put_short(s, s->bi_buf);
201  s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
202  s->bi_valid += length - Buf_size;
203  } else {
204  s->bi_buf |= (ush)value << s->bi_valid;
205  s->bi_valid += length;
206  }
207 }
208 #else /* !DEBUG */
209 
210 #define send_bits(s, value, length) \
211 { int len = length;\
212  if (s->bi_valid > (int)Buf_size - len) {\
213  int val = value;\
214  s->bi_buf |= (ush)val << s->bi_valid;\
215  put_short(s, s->bi_buf);\
216  s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
217  s->bi_valid += len - Buf_size;\
218  } else {\
219  s->bi_buf |= (ush)(value) << s->bi_valid;\
220  s->bi_valid += len;\
221  }\
222 }
223 #endif /* DEBUG */
224 
225 
226 /* the arguments must not have side effects */
227 
228 /* ===========================================================================
229  * Initialize the various 'constant' tables.
230  */
232 {
233 #if defined(GEN_TREES_H) || !defined(STDC)
234  static int static_init_done = 0;
235  int n; /* iterates over tree elements */
236  int bits; /* bit counter */
237  int length; /* length value */
238  int code; /* code value */
239  int dist; /* distance index */
240  ush bl_count[MAX_BITS+1];
241  /* number of codes at each bit length for an optimal tree */
242 
243  if (static_init_done) return;
244 
245  /* For some embedded targets, global variables are not initialized: */
246 #ifdef NO_INIT_GLOBAL_POINTERS
247  static_l_desc.static_tree = static_ltree;
248  static_l_desc.extra_bits = extra_lbits;
249  static_d_desc.static_tree = static_dtree;
250  static_d_desc.extra_bits = extra_dbits;
251  static_bl_desc.extra_bits = extra_blbits;
252 #endif
253 
254  /* Initialize the mapping length (0..255) -> length code (0..28) */
255  length = 0;
256  for (code = 0; code < LENGTH_CODES-1; code++) {
257  base_length[code] = length;
258  for (n = 0; n < (1<<extra_lbits[code]); n++) {
259  _length_code[length++] = (uch)code;
260  }
261  }
262  Assert (length == 256, "tr_static_init: length != 256");
263  /* Note that the length 255 (match length 258) can be represented
264  * in two different ways: code 284 + 5 bits or code 285, so we
265  * overwrite length_code[255] to use the best encoding:
266  */
267  _length_code[length-1] = (uch)code;
268 
269  /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
270  dist = 0;
271  for (code = 0 ; code < 16; code++) {
272  base_dist[code] = dist;
273  for (n = 0; n < (1<<extra_dbits[code]); n++) {
274  _dist_code[dist++] = (uch)code;
275  }
276  }
277  Assert (dist == 256, "tr_static_init: dist != 256");
278  dist >>= 7; /* from now on, all distances are divided by 128 */
279  for ( ; code < D_CODES; code++) {
280  base_dist[code] = dist << 7;
281  for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
282  _dist_code[256 + dist++] = (uch)code;
283  }
284  }
285  Assert (dist == 256, "tr_static_init: 256+dist != 512");
286 
287  /* Construct the codes of the static literal tree */
288  for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
289  n = 0;
290  while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
291  while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
292  while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
293  while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
294  /* Codes 286 and 287 do not exist, but we must include them in the
295  * tree construction to get a canonical Huffman tree (longest code
296  * all ones)
297  */
298  gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
299 
300  /* The static distance tree is trivial: */
301  for (n = 0; n < D_CODES; n++) {
302  static_dtree[n].Len = 5;
303  static_dtree[n].Code = bi_reverse((unsigned)n, 5);
304  }
305  static_init_done = 1;
306 
307 # ifdef GEN_TREES_H
308  gen_trees_header();
309 # endif
310 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
311 }
312 
313 /* ===========================================================================
314  * Genererate the file trees.h describing the static trees.
315  */
316 #ifdef GEN_TREES_H
317 # ifndef DEBUG
318 # include <stdio.h>
319 # endif
320 
321 # define SEPARATOR(i, last, width) \
322  ((i) == (last)? "\n};\n\n" : \
323  ((i) % (width) == (width)-1 ? ",\n" : ", "))
324 
325 void gen_trees_header()
326 {
327  FILE *header = fopen("trees.h", "w");
328  int i;
329 
330  Assert (header != NULL, "Can't open trees.h");
331  fprintf(header,
332  "/* header created automatically with -DGEN_TREES_H */\n\n");
333 
334  fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
335  for (i = 0; i < L_CODES+2; i++) {
336  fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
337  static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
338  }
339 
340  fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
341  for (i = 0; i < D_CODES; i++) {
342  fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
343  static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
344  }
345 
346  fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
347  for (i = 0; i < DIST_CODE_LEN; i++) {
348  fprintf(header, "%2u%s", _dist_code[i],
349  SEPARATOR(i, DIST_CODE_LEN-1, 20));
350  }
351 
352  fprintf(header,
353  "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
354  for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
355  fprintf(header, "%2u%s", _length_code[i],
356  SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
357  }
358 
359  fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
360  for (i = 0; i < LENGTH_CODES; i++) {
361  fprintf(header, "%1u%s", base_length[i],
362  SEPARATOR(i, LENGTH_CODES-1, 20));
363  }
364 
365  fprintf(header, "local const int base_dist[D_CODES] = {\n");
366  for (i = 0; i < D_CODES; i++) {
367  fprintf(header, "%5u%s", base_dist[i],
368  SEPARATOR(i, D_CODES-1, 10));
369  }
370 
371  fclose(header);
372 }
373 #endif /* GEN_TREES_H */
374 
375 /* ===========================================================================
376  * Initialize the tree data structures for a new zlib stream.
377  */
378 void ZLIB_INTERNAL _tr_init(deflate_state *s)
379 {
380  tr_static_init();
381 
382  s->l_desc.dyn_tree = s->dyn_ltree;
383  s->l_desc.stat_desc = &static_l_desc;
384 
385  s->d_desc.dyn_tree = s->dyn_dtree;
386  s->d_desc.stat_desc = &static_d_desc;
387 
388  s->bl_desc.dyn_tree = s->bl_tree;
389  s->bl_desc.stat_desc = &static_bl_desc;
390 
391  s->bi_buf = 0;
392  s->bi_valid = 0;
393 #ifdef DEBUG
394  s->compressed_len = 0L;
395  s->bits_sent = 0L;
396 #endif
397 
398  /* Initialize the first block of the first file: */
399  init_block(s);
400 }
401 
402 /* ===========================================================================
403  * Initialize a new block.
404  */
405 local void init_block(deflate_state *s)
406 {
407  int n; /* iterates over tree elements */
408 
409  /* Initialize the trees. */
410  for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
411  for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
412  for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
413 
414  s->dyn_ltree[END_BLOCK].Freq = 1;
415  s->opt_len = s->static_len = 0L;
416  s->last_lit = s->matches = 0;
417 }
418 
419 #define SMALLEST 1
420 /* Index within the heap array of least frequent node in the Huffman tree */
421 
422 
423 /* ===========================================================================
424  * Remove the smallest element from the heap and recreate the heap with
425  * one less element. Updates heap and heap_len.
426  */
427 #define pqremove(s, tree, top) \
428 {\
429  top = s->heap[SMALLEST]; \
430  s->heap[SMALLEST] = s->heap[s->heap_len--]; \
431  pqdownheap(s, tree, SMALLEST); \
432 }
433 
434 /* ===========================================================================
435  * Compares to subtrees, using the tree depth as tie breaker when
436  * the subtrees have equal frequency. This minimizes the worst case length.
437  */
438 #define smaller(tree, n, m, depth) \
439  (tree[n].Freq < tree[m].Freq || \
440  (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
441 
442 /* ===========================================================================
443  * Restore the heap property by moving down the tree starting at node k,
444  * exchanging a node with the smallest of its two sons if necessary, stopping
445  * when the heap property is re-established (each father smaller than its
446  * two sons).
447  */
448 local void pqdownheap(deflate_state *s, ct_data * tree, int k)
449 {
450  int v = s->heap[k];
451  int j = k << 1; /* left son of k */
452  while (j <= s->heap_len) {
453  /* Set j to the smallest of the two sons: */
454  if (j < s->heap_len &&
455  smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
456  j++;
457  }
458  /* Exit if v is smaller than both sons */
459  if (smaller(tree, v, s->heap[j], s->depth)) break;
460 
461  /* Exchange v with the smallest son */
462  s->heap[k] = s->heap[j]; k = j;
463 
464  /* And continue down the tree, setting j to the left son of k */
465  j <<= 1;
466  }
467  s->heap[k] = v;
468 }
469 
470 /* ===========================================================================
471  * Compute the optimal bit lengths for a tree and update the total bit length
472  * for the current block.
473  * IN assertion: the fields freq and dad are set, heap[heap_max] and
474  * above are the tree nodes sorted by increasing frequency.
475  * OUT assertions: the field len is set to the optimal bit length, the
476  * array bl_count contains the frequencies for each bit length.
477  * The length opt_len is updated; static_len is also updated if stree is
478  * not null.
479  */
480 local void gen_bitlen(deflate_state *s, tree_desc * desc)
481 {
482  ct_data *tree = desc->dyn_tree;
483  int max_code = desc->max_code;
484  const ct_data *stree = desc->stat_desc->static_tree;
485  const intf *extra = desc->stat_desc->extra_bits;
486  int base = desc->stat_desc->extra_base;
487  int max_length = desc->stat_desc->max_length;
488  int h; /* heap index */
489  int n, m; /* iterate over the tree elements */
490  int bits; /* bit length */
491  int xbits; /* extra bits */
492  ush f; /* frequency */
493  int overflow = 0; /* number of elements with bit length too large */
494 
495  for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
496 
497  /* In a first pass, compute the optimal bit lengths (which may
498  * overflow in the case of the bit length tree).
499  */
500  tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
501 
502  for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
503  n = s->heap[h];
504  bits = tree[tree[n].Dad].Len + 1;
505  if (bits > max_length) bits = max_length, overflow++;
506  tree[n].Len = (ush)bits;
507  /* We overwrite tree[n].Dad which is no longer needed */
508 
509  if (n > max_code) continue; /* not a leaf node */
510 
511  s->bl_count[bits]++;
512  xbits = 0;
513  if (n >= base) xbits = extra[n-base];
514  f = tree[n].Freq;
515  s->opt_len += (ulg)f * (bits + xbits);
516  if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
517  }
518  if (overflow == 0) return;
519 
520  Trace((stderr,"\nbit length overflow\n"));
521  /* This happens for example on obj2 and pic of the Calgary corpus */
522 
523  /* Find the first bit length which could increase: */
524  do {
525  bits = max_length-1;
526  while (s->bl_count[bits] == 0) bits--;
527  s->bl_count[bits]--; /* move one leaf down the tree */
528  s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
529  s->bl_count[max_length]--;
530  /* The brother of the overflow item also moves one step up,
531  * but this does not affect bl_count[max_length]
532  */
533  overflow -= 2;
534  } while (overflow > 0);
535 
536  /* Now recompute all bit lengths, scanning in increasing frequency.
537  * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
538  * lengths instead of fixing only the wrong ones. This idea is taken
539  * from 'ar' written by Haruhiko Okumura.)
540  */
541  for (bits = max_length; bits != 0; bits--) {
542  n = s->bl_count[bits];
543  while (n != 0) {
544  m = s->heap[--h];
545  if (m > max_code) continue;
546  if ((unsigned) tree[m].Len != (unsigned) bits) {
547  Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
548  s->opt_len += ((long)bits - (long)tree[m].Len)
549  *(long)tree[m].Freq;
550  tree[m].Len = (ush)bits;
551  }
552  n--;
553  }
554  }
555 }
556 
557 /* ===========================================================================
558  * Generate the codes for a given tree and bit counts (which need not be
559  * optimal).
560  * IN assertion: the array bl_count contains the bit length statistics for
561  * the given tree and the field len is set for all tree elements.
562  * OUT assertion: the field code is set for all tree elements of non
563  * zero code length.
564  */
565 local void gen_codes (ct_data *tree, int max_code, ushf *bl_count)
566 {
567  ush next_code[MAX_BITS+1]; /* next code value for each bit length */
568  ush code = 0; /* running code value */
569  int bits; /* bit index */
570  int n; /* code index */
571 
572  /* The distribution counts are first used to generate the code values
573  * without bit reversal.
574  */
575  for (bits = 1; bits <= MAX_BITS; bits++) {
576  next_code[bits] = code = (code + bl_count[bits-1]) << 1;
577  }
578  /* Check that the bit counts in bl_count are consistent. The last code
579  * must be all ones.
580  */
581  Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
582  "inconsistent bit counts");
583  Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
584 
585  for (n = 0; n <= max_code; n++) {
586  int len = tree[n].Len;
587  if (len == 0) continue;
588  /* Now reverse the bits */
589  tree[n].Code = bi_reverse(next_code[len]++, len);
590 
591  Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
592  n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
593  }
594 }
595 
596 /* ===========================================================================
597  * Construct one Huffman tree and assigns the code bit strings and lengths.
598  * Update the total bit length for the current block.
599  * IN assertion: the field freq is set for all tree elements.
600  * OUT assertions: the fields len and code are set to the optimal bit length
601  * and corresponding code. The length opt_len is updated; static_len is
602  * also updated if stree is not null. The field max_code is set.
603  */
604 local void build_tree(deflate_state *s, tree_desc *desc)
605 {
606  ct_data *tree = desc->dyn_tree;
607  const ct_data *stree = desc->stat_desc->static_tree;
608  int elems = desc->stat_desc->elems;
609  int n, m; /* iterate over heap elements */
610  int max_code = -1; /* largest code with non zero frequency */
611  int node; /* new node being created */
612 
613  /* Construct the initial heap, with least frequent element in
614  * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
615  * heap[0] is not used.
616  */
617  s->heap_len = 0, s->heap_max = HEAP_SIZE;
618 
619  for (n = 0; n < elems; n++) {
620  if (tree[n].Freq != 0) {
621  s->heap[++(s->heap_len)] = max_code = n;
622  s->depth[n] = 0;
623  } else {
624  tree[n].Len = 0;
625  }
626  }
627 
628  /* The pkzip format requires that at least one distance code exists,
629  * and that at least one bit should be sent even if there is only one
630  * possible code. So to avoid special checks later on we force at least
631  * two codes of non zero frequency.
632  */
633  while (s->heap_len < 2) {
634  node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
635  tree[node].Freq = 1;
636  s->depth[node] = 0;
637  s->opt_len--; if (stree) s->static_len -= stree[node].Len;
638  /* node is 0 or 1 so it does not have extra bits */
639  }
640  desc->max_code = max_code;
641 
642  /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
643  * establish sub-heaps of increasing lengths:
644  */
645  for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
646 
647  /* Construct the Huffman tree by repeatedly combining the least two
648  * frequent nodes.
649  */
650  node = elems; /* next internal node of the tree */
651  do {
652  pqremove(s, tree, n); /* n = node of least frequency */
653  m = s->heap[SMALLEST]; /* m = node of next least frequency */
654 
655  s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
656  s->heap[--(s->heap_max)] = m;
657 
658  /* Create a new node father of n and m */
659  tree[node].Freq = tree[n].Freq + tree[m].Freq;
660  s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
661  s->depth[n] : s->depth[m]) + 1);
662  tree[n].Dad = tree[m].Dad = (ush)node;
663 #ifdef DUMP_BL_TREE
664  if (tree == s->bl_tree) {
665  fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
666  node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
667  }
668 #endif
669  /* and insert the new node in the heap */
670  s->heap[SMALLEST] = node++;
671  pqdownheap(s, tree, SMALLEST);
672 
673  } while (s->heap_len >= 2);
674 
675  s->heap[--(s->heap_max)] = s->heap[SMALLEST];
676 
677  /* At this point, the fields freq and dad are set. We can now
678  * generate the bit lengths.
679  */
680  gen_bitlen(s, (tree_desc *)desc);
681 
682  /* The field len is now set, we can generate the bit codes */
683  gen_codes ((ct_data *)tree, max_code, s->bl_count);
684 }
685 
686 /* ===========================================================================
687  * Scan a literal or distance tree to determine the frequencies of the codes
688  * in the bit length tree.
689  */
690 local void scan_tree (deflate_state *s, ct_data *tree, int max_code)
691 {
692  int n; /* iterates over all tree elements */
693  int prevlen = -1; /* last emitted length */
694  int curlen; /* length of current code */
695  int nextlen = tree[0].Len; /* length of next code */
696  int count = 0; /* repeat count of the current code */
697  int max_count = 7; /* max repeat count */
698  int min_count = 4; /* min repeat count */
699 
700  if (nextlen == 0) max_count = 138, min_count = 3;
701  tree[max_code+1].Len = (ush)0xffff; /* guard */
702 
703  for (n = 0; n <= max_code; n++) {
704  curlen = nextlen; nextlen = tree[n+1].Len;
705  if (++count < max_count && curlen == nextlen) {
706  continue;
707  } else if (count < min_count) {
708  s->bl_tree[curlen].Freq += count;
709  } else if (curlen != 0) {
710  if (curlen != prevlen) s->bl_tree[curlen].Freq++;
711  s->bl_tree[REP_3_6].Freq++;
712  } else if (count <= 10) {
713  s->bl_tree[REPZ_3_10].Freq++;
714  } else {
715  s->bl_tree[REPZ_11_138].Freq++;
716  }
717  count = 0; prevlen = curlen;
718  if (nextlen == 0) {
719  max_count = 138, min_count = 3;
720  } else if (curlen == nextlen) {
721  max_count = 6, min_count = 3;
722  } else {
723  max_count = 7, min_count = 4;
724  }
725  }
726 }
727 
728 /* ===========================================================================
729  * Send a literal or distance tree in compressed form, using the codes in
730  * bl_tree.
731  */
732 local void send_tree (deflate_state *s, ct_data *tree, int max_code)
733 {
734  int n; /* iterates over all tree elements */
735  int prevlen = -1; /* last emitted length */
736  int curlen; /* length of current code */
737  int nextlen = tree[0].Len; /* length of next code */
738  int count = 0; /* repeat count of the current code */
739  int max_count = 7; /* max repeat count */
740  int min_count = 4; /* min repeat count */
741 
742  /* tree[max_code+1].Len = -1; */ /* guard already set */
743  if (nextlen == 0) max_count = 138, min_count = 3;
744 
745  for (n = 0; n <= max_code; n++) {
746  curlen = nextlen; nextlen = tree[n+1].Len;
747  if (++count < max_count && curlen == nextlen) {
748  continue;
749  } else if (count < min_count) {
750  do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
751 
752  } else if (curlen != 0) {
753  if (curlen != prevlen) {
754  send_code(s, curlen, s->bl_tree); count--;
755  }
756  Assert(count >= 3 && count <= 6, " 3_6?");
757  send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
758 
759  } else if (count <= 10) {
760  send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
761 
762  } else {
763  send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
764  }
765  count = 0; prevlen = curlen;
766  if (nextlen == 0) {
767  max_count = 138, min_count = 3;
768  } else if (curlen == nextlen) {
769  max_count = 6, min_count = 3;
770  } else {
771  max_count = 7, min_count = 4;
772  }
773  }
774 }
775 
776 /* ===========================================================================
777  * Construct the Huffman tree for the bit lengths and return the index in
778  * bl_order of the last bit length code to send.
779  */
780 local int build_bl_tree(deflate_state *s)
781 {
782  int max_blindex; /* index of last bit length code of non zero freq */
783 
784  /* Determine the bit length frequencies for literal and distance trees */
785  scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
786  scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
787 
788  /* Build the bit length tree: */
789  build_tree(s, (tree_desc *)(&(s->bl_desc)));
790  /* opt_len now includes the length of the tree representations, except
791  * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
792  */
793 
794  /* Determine the number of bit length codes to send. The pkzip format
795  * requires that at least 4 bit length codes be sent. (appnote.txt says
796  * 3 but the actual value used is 4.)
797  */
798  for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
799  if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
800  }
801  /* Update opt_len to include the bit length tree and counts */
802  s->opt_len += 3*(max_blindex+1) + 5+5+4;
803  Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
804  s->opt_len, s->static_len));
805 
806  return max_blindex;
807 }
808 
809 /* ===========================================================================
810  * Send the header for a block using dynamic Huffman trees: the counts, the
811  * lengths of the bit length codes, the literal tree and the distance tree.
812  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
813  */
814 local void send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)
815 {
816  int rank; /* index in bl_order */
817 
818  Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
819  Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
820  "too many codes");
821  Tracev((stderr, "\nbl counts: "));
822  send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
823  send_bits(s, dcodes-1, 5);
824  send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
825  for (rank = 0; rank < blcodes; rank++) {
826  Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
827  send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
828  }
829  Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
830 
831  send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
832  Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
833 
834  send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
835  Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
836 }
837 
838 /* ===========================================================================
839  * Send a stored block
840  */
841 void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf, ulg stored_len, int last)
842 {
843  send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */
844 #ifdef DEBUG
845  s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
846  s->compressed_len += (stored_len + 4) << 3;
847 #endif
848  copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
849 }
850 
851 /* ===========================================================================
852  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
853  */
854 void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s)
855 {
856  bi_flush(s);
857 }
858 
859 /* ===========================================================================
860  * Send one empty static block to give enough lookahead for inflate.
861  * This takes 10 bits, of which 7 may remain in the bit buffer.
862  */
863 void ZLIB_INTERNAL _tr_align(deflate_state *s)
864 {
865  send_bits(s, STATIC_TREES<<1, 3);
867 #ifdef DEBUG
868  s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
869 #endif
870  bi_flush(s);
871 }
872 
873 /* ===========================================================================
874  * Determine the best encoding for the current block: dynamic trees, static
875  * trees or store, and output the encoded block to the zip file.
876  */
877 void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf, ulg stored_len, int last)
878 {
879  ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
880  int max_blindex = 0; /* index of last bit length code of non zero freq */
881 
882  /* Build the Huffman trees unless a stored block is forced */
883  if (s->level > 0) {
884 
885  /* Check if the file is binary or text */
886  if (s->strm->data_type == Z_UNKNOWN)
887  s->strm->data_type = detect_data_type(s);
888 
889  /* Construct the literal and distance trees */
890  build_tree(s, (tree_desc *)(&(s->l_desc)));
891  Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
892  s->static_len));
893 
894  build_tree(s, (tree_desc *)(&(s->d_desc)));
895  Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
896  s->static_len));
897  /* At this point, opt_len and static_len are the total bit lengths of
898  * the compressed block data, excluding the tree representations.
899  */
900 
901  /* Build the bit length tree for the above two trees, and get the index
902  * in bl_order of the last bit length code to send.
903  */
904  max_blindex = build_bl_tree(s);
905 
906  /* Determine the best encoding. Compute the block lengths in bytes. */
907  opt_lenb = (s->opt_len+3+7)>>3;
908  static_lenb = (s->static_len+3+7)>>3;
909 
910  Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
911  opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
912  s->last_lit));
913 
914  if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
915 
916  } else {
917  Assert(buf != (char*)0, "lost buf");
918  opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
919  }
920 
921 #ifdef FORCE_STORED
922  if (buf != (char*)0) { /* force stored block */
923 #else
924  if (stored_len+4 <= opt_lenb && buf != (char*)0) {
925  /* 4: two words for the lengths */
926 #endif
927  /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
928  * Otherwise we can't have processed more than WSIZE input bytes since
929  * the last block flush, because compression would have been
930  * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
931  * transform a block into a stored block.
932  */
933  _tr_stored_block(s, buf, stored_len, last);
934 
935 #ifdef FORCE_STATIC
936  } else if (static_lenb >= 0) { /* force static trees */
937 #else
938  } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
939 #endif
940  send_bits(s, (STATIC_TREES<<1)+last, 3);
941  compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
942 #ifdef DEBUG
943  s->compressed_len += 3 + s->static_len;
944 #endif
945  } else {
946  send_bits(s, (DYN_TREES<<1)+last, 3);
947  send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
948  max_blindex+1);
949  compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
950 #ifdef DEBUG
951  s->compressed_len += 3 + s->opt_len;
952 #endif
953  }
954  Assert (s->compressed_len == s->bits_sent, "bad compressed size");
955  /* The above check is made mod 2^32, for files larger than 512 MB
956  * and uLong implemented on 32 bits.
957  */
958  init_block(s);
959 
960  if (last) {
961  bi_windup(s);
962 #ifdef DEBUG
963  s->compressed_len += 7; /* align on byte boundary */
964 #endif
965  }
966  Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
967  s->compressed_len-7*last));
968 }
969 
970 /* ===========================================================================
971  * Save the match info and tally the frequency counts. Return true if
972  * the current block must be flushed.
973  */
974 int ZLIB_INTERNAL _tr_tally (deflate_state *s, unsigned dist, unsigned lc)
975 {
976  s->d_buf[s->last_lit] = (ush)dist;
977  s->l_buf[s->last_lit++] = (uch)lc;
978  if (dist == 0) {
979  /* lc is the unmatched char */
980  s->dyn_ltree[lc].Freq++;
981  } else {
982  s->matches++;
983  /* Here, lc is the match length - MIN_MATCH */
984  dist--; /* dist = match distance - 1 */
985  Assert((ush)dist < (ush)MAX_DIST(s) &&
986  (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
987  (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
988 
989  s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
990  s->dyn_dtree[d_code(dist)].Freq++;
991  }
992 
993 #ifdef TRUNCATE_BLOCK
994  /* Try to guess if it is profitable to stop the current block here */
995  if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
996  /* Compute an upper bound for the compressed length */
997  ulg out_length = (ulg)s->last_lit*8L;
998  ulg in_length = (ulg)((long)s->strstart - s->block_start);
999  int dcode;
1000  for (dcode = 0; dcode < D_CODES; dcode++) {
1001  out_length += (ulg)s->dyn_dtree[dcode].Freq *
1002  (5L+extra_dbits[dcode]);
1003  }
1004  out_length >>= 3;
1005  Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1006  s->last_lit, in_length, out_length,
1007  100L - out_length*100L/in_length));
1008  if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1009  }
1010 #endif
1011  return (s->last_lit == s->lit_bufsize-1);
1012  /* We avoid equality with lit_bufsize because of wraparound at 64K
1013  * on 16 bit machines and because stored blocks are restricted to
1014  * 64K-1 bytes.
1015  */
1016 }
1017 
1018 /* ===========================================================================
1019  * Send the block data compressed using the given Huffman trees
1020  */
1021 local void compress_block(deflate_state *s, ct_data *ltree, ct_data *dtree)
1022 {
1023  unsigned dist; /* distance of matched string */
1024  int lc; /* match length or unmatched char (if dist == 0) */
1025  unsigned lx = 0; /* running index in l_buf */
1026  unsigned code; /* the code to send */
1027  int extra; /* number of extra bits to send */
1028 
1029  if (s->last_lit != 0) do {
1030  dist = s->d_buf[lx];
1031  lc = s->l_buf[lx++];
1032  if (dist == 0) {
1033  send_code(s, lc, ltree); /* send a literal byte */
1034  Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1035  } else {
1036  /* Here, lc is the match length - MIN_MATCH */
1037  code = _length_code[lc];
1038  send_code(s, code+LITERALS+1, ltree); /* send the length code */
1039  extra = extra_lbits[code];
1040  if (extra != 0) {
1041  lc -= base_length[code];
1042  send_bits(s, lc, extra); /* send the extra length bits */
1043  }
1044  dist--; /* dist is now the match distance - 1 */
1045  code = d_code(dist);
1046  Assert (code < D_CODES, "bad d_code");
1047 
1048  send_code(s, code, dtree); /* send the distance code */
1049  extra = extra_dbits[code];
1050  if (extra != 0) {
1051  dist -= base_dist[code];
1052  send_bits(s, dist, extra); /* send the extra distance bits */
1053  }
1054  } /* literal or match pair ? */
1055 
1056  /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1057  Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1058  "pendingBuf overflow");
1059 
1060  } while (lx < s->last_lit);
1061 
1062  send_code(s, END_BLOCK, ltree);
1063 }
1064 
1065 /* ===========================================================================
1066  * Check if the data type is TEXT or BINARY, using the following algorithm:
1067  * - TEXT if the two conditions below are satisfied:
1068  * a) There are no non-portable control characters belonging to the
1069  * "black list" (0..6, 14..25, 28..31).
1070  * b) There is at least one printable character belonging to the
1071  * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1072  * - BINARY otherwise.
1073  * - The following partially-portable control characters form a
1074  * "gray list" that is ignored in this detection algorithm:
1075  * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1076  * IN assertion: the fields Freq of dyn_ltree are set.
1077  */
1078 local int detect_data_type(deflate_state *s)
1079 {
1080  /* black_mask is the bit mask of black-listed bytes
1081  * set bits 0..6, 14..25, and 28..31
1082  * 0xf3ffc07f = binary 11110011111111111100000001111111
1083  */
1084  unsigned long black_mask = 0xf3ffc07fUL;
1085  int n;
1086 
1087  /* Check for non-textual ("black-listed") bytes. */
1088  for (n = 0; n <= 31; n++, black_mask >>= 1)
1089  if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1090  return Z_BINARY;
1091 
1092  /* Check for textual ("white-listed") bytes. */
1093  if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1094  || s->dyn_ltree[13].Freq != 0)
1095  return Z_TEXT;
1096  for (n = 32; n < LITERALS; n++)
1097  if (s->dyn_ltree[n].Freq != 0)
1098  return Z_TEXT;
1099 
1100  /* There are no "black-listed" or "white-listed" bytes:
1101  * this stream either is empty or has tolerated ("gray-listed") bytes only.
1102  */
1103  return Z_BINARY;
1104 }
1105 
1106 /* ===========================================================================
1107  * Reverse the first len bits of a code, using straightforward code (a faster
1108  * method would use a table)
1109  * IN assertion: 1 <= len <= 15
1110  */
1111 local unsigned bi_reverse(unsigned code, int len)
1112 {
1113  unsigned res = 0;
1114  do {
1115  res |= code & 1;
1116  code >>= 1, res <<= 1;
1117  } while (--len > 0);
1118  return res >> 1;
1119 }
1120 
1121 /* ===========================================================================
1122  * Flush the bit buffer, keeping at most 7 bits in it.
1123  */
1124 local void bi_flush(deflate_state *s)
1125 {
1126  if (s->bi_valid == 16) {
1127  put_short(s, s->bi_buf);
1128  s->bi_buf = 0;
1129  s->bi_valid = 0;
1130  } else if (s->bi_valid >= 8) {
1131  put_byte(s, (Byte)s->bi_buf);
1132  s->bi_buf >>= 8;
1133  s->bi_valid -= 8;
1134  }
1135 }
1136 
1137 /* ===========================================================================
1138  * Flush the bit buffer and align the output on a byte boundary
1139  */
1140 local void bi_windup(deflate_state *s)
1141 {
1142  if (s->bi_valid > 8) {
1143  put_short(s, s->bi_buf);
1144  } else if (s->bi_valid > 0) {
1145  put_byte(s, (Byte)s->bi_buf);
1146  }
1147  s->bi_buf = 0;
1148  s->bi_valid = 0;
1149 #ifdef DEBUG
1150  s->bits_sent = (s->bits_sent+7) & ~7;
1151 #endif
1152 }
1153 
1154 /* ===========================================================================
1155  * Copy a stored block, storing first the length and its
1156  * one's complement if requested.
1157  */
1158 local void copy_block(deflate_state *s, charf *buf, unsigned len, int header)
1159 {
1160  bi_windup(s); /* align on byte boundary */
1161 
1162  if (header) {
1163  put_short(s, (ush)len);
1164  put_short(s, (ush)~len);
1165 #ifdef DEBUG
1166  s->bits_sent += 2*16;
1167 #endif
1168  }
1169 #ifdef DEBUG
1170  s->bits_sent += (ulg)len<<3;
1171 #endif
1172  while (len--) {
1173  put_byte(s, *buf++);
1174  }
1175 }
int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc)
Definition: trees.cc:974
local const uch bl_order[BL_CODES]
Definition: trees.cc:72
unsigned long ulg
Definition: csz_inflate.cc:226
local static_tree_desc static_l_desc
Definition: trees.cc:125
uch _dist_code[DIST_CODE_LEN]
Definition: trees.cc:98
const intf * extra_bits
Definition: trees.cc:119
void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf, ulg stored_len, int last)
Definition: trees.cc:841
#define REP_3_6
Definition: trees.cc:53
local void bi_windup(deflate_state *s)
Definition: trees.cc:1140
local static_tree_desc static_bl_desc
Definition: trees.cc:131
local static_tree_desc static_d_desc
Definition: trees.cc:128
#define ZLIB_INTERNAL
Definition: compress.cc:8
void ZLIB_INTERNAL _tr_init(deflate_state *s)
Definition: trees.cc:378
local const int extra_blbits[BL_CODES]
Definition: trees.cc:69
#define smaller(tree, n, m, depth)
Definition: trees.cc:438
local ct_data static_dtree[D_CODES]
Definition: trees.cc:93
#define Trace(x)
Definition: csz_inflate.cc:250
void ZLIB_INTERNAL _tr_align(deflate_state *s)
Definition: trees.cc:863
local void pqdownheap(deflate_state *s, ct_data *tree, int k)
Definition: trees.cc:448
local void send_tree(deflate_state *s, ct_data *tree, int max_code)
Definition: trees.cc:732
#define local
Definition: adler32.cc:10
local void scan_tree(deflate_state *s, ct_data *tree, int max_code)
Definition: trees.cc:690
#define SMALLEST
Definition: trees.cc:419
local void bi_flush(deflate_state *s)
Definition: trees.cc:1124
local void build_tree(deflate_state *s, tree_desc *desc)
Definition: trees.cc:604
local void compress_block(deflate_state *s, ct_data *ltree, ct_data *dtree)
Definition: trees.cc:1021
#define DIST_CODE_LEN
Definition: trees.cc:81
local int base_length[LENGTH_CODES]
Definition: trees.cc:107
static const G4int L[nN]
local ct_data static_ltree[L_CODES+2]
Definition: trees.cc:86
static const double s
Definition: G4SIunits.hh:150
local int build_bl_tree(deflate_state *s)
Definition: trees.cc:780
local const int extra_dbits[D_CODES]
Definition: trees.cc:66
#define put_short(s, w)
Definition: trees.cc:176
local void send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)
Definition: trees.cc:814
local unsigned bi_reverse(unsigned code, int len)
Definition: trees.cc:1111
#define pqremove(s, tree, top)
Definition: trees.cc:427
uch _length_code[MAX_MATCH-MIN_MATCH+1]
Definition: trees.cc:104
local const int extra_lbits[LENGTH_CODES]
Definition: trees.cc:63
const G4int n
local int base_dist[D_CODES]
Definition: trees.cc:110
local void copy_block(deflate_state *s, charf *buf, unsigned len, int header)
Definition: trees.cc:1158
void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf, ulg stored_len, int last)
Definition: trees.cc:877
#define REPZ_11_138
Definition: trees.cc:59
local void tr_static_init()
Definition: trees.cc:231
void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s)
Definition: trees.cc:854
#define END_BLOCK
Definition: trees.cc:50
unsigned char uch
Definition: csz_inflate.cc:224
local void gen_bitlen(deflate_state *s, tree_desc *desc)
Definition: trees.cc:480
local void tr_static_init OF((void))
#define REPZ_3_10
Definition: trees.cc:56
unsigned short ush
Definition: csz_inflate.cc:225
static const double m
Definition: G4SIunits.hh:110
#define MAX_BL_BITS
Definition: trees.cc:47
const ct_data * static_tree
Definition: trees.cc:118
local void init_block(deflate_state *s)
Definition: trees.cc:405
#define send_code(s, c, tree)
Definition: trees.cc:163
#define send_bits(s, value, length)
Definition: trees.cc:210
local void gen_codes(ct_data *tree, int max_code, ushf *bl_count)
Definition: trees.cc:565
local int detect_data_type(deflate_state *s)
Definition: trees.cc:1078