71     G4cout << 
"MicroElec Elastic model is constructed " << 
G4endl 
   86   std::map< G4String,G4MicroElecCrossSectionDataSet*,std::less<G4String> >::iterator 
pos;
 
  106     G4cout << 
"Calling G4MicroElecElasticModel::Initialise()" << 
G4endl;
 
  112     G4cout << 
"G4MicroElecElasticModel: low energy limit increased from " << 
 
  119     G4cout << 
"G4MicroElecElasticModel: high energy limit decreased from " << 
 
  128   G4String fileElectron(
"microelec/sigma_elastic_e_Si");
 
  145     char *path = getenv(
"G4LEDATA");
 
  153     std::ostringstream eFullFileName;
 
  154     eFullFileName << path << 
"/microelec/sigmadiff_cumulated_elastic_e_Si.dat";
 
  155     std::ifstream eDiffCrossSection(eFullFileName.str().c_str());
 
  157     if (!eDiffCrossSection) 
 
  158         G4Exception(
"G4MicroElecElasticModel::Initialise",
"em0003",
FatalException,
"Missing data file: /microelec/sigmadiff_cumulated_elastic_e_Si.dat");
 
  173     while(!eDiffCrossSection.eof())
 
  177         eDiffCrossSection>>tDummy>>eDummy;
 
  184           eVecm[tDummy].push_back(0.);
 
  189         if (eDummy != 
eVecm[tDummy].back()) 
eVecm[tDummy].push_back(eDummy);
 
  196     G4cout << 
"Loaded cross section files for MicroElec Elastic model" << 
G4endl;
 
  200     G4cout << 
"MicroElec Elastic model is initialized " << G4endl
 
  222     G4cout << 
"Calling CrossSectionPerVolume() of G4MicroElecElasticModel" << 
G4endl;
 
  240         std::map< G4String,G4MicroElecCrossSectionDataSet*,std::less<G4String> >::iterator 
pos;
 
  253             G4Exception(
"G4MicroElecElasticModel::ComputeCrossSectionPerVolume",
"em0002",
FatalException,
"Model not applicable to particle type.");
 
  261     G4cout << 
" - Cross section per Si atom (cm^-1)=" << sigma*density/(1./
cm) << G4endl;
 
  279     G4cout << 
"Calling SampleSecondaries() of G4MicroElecElasticModel" << 
G4endl;
 
  301     G4double xDir = std::sqrt(1. - cosTheta*cosTheta);
 
  303     xDir *= std::cos(phi);
 
  304     yDir *= std::sin(phi);
 
  306     G4ThreeVector zPrimeVers((xDir*xVers + yDir*yVers + cosTheta*zVers));
 
  336     std::vector<double>::iterator t2 = std::upper_bound(eTdummyVec.begin(),eTdummyVec.end(), k);
 
  337     std::vector<double>::iterator t1 = t2-1;
 
  339     std::vector<double>::iterator e12 = std::upper_bound(eVecm[(*t1)].begin(),eVecm[(*t1)].end(), integrDiff);
 
  340     std::vector<double>::iterator e11 = e12-1;
 
  342     std::vector<double>::iterator e22 = std::upper_bound(eVecm[(*t2)].begin(),eVecm[(*t2)].end(), integrDiff);
 
  343     std::vector<double>::iterator e21 = e22-1;
 
  352     xs11 = eDiffCrossSectionData[valueT1][valueE11];
 
  353     xs12 = eDiffCrossSectionData[valueT1][valueE12];
 
  354     xs21 = eDiffCrossSectionData[valueT2][valueE21];
 
  355     xs22 = eDiffCrossSectionData[valueT2][valueE22];
 
  359   if (xs11==0 || xs12==0 ||xs21==0 ||xs22==0) 
return (0.);
 
  361   theta = QuadInterpolator(  valueE11, valueE12, 
 
  381   G4double value = std::exp(d1 + (d2 - d1)*(e - e1)/ (e2 - e1));
 
  407   G4double a = (std::log10(xs2)-std::log10(xs1)) / (std::log10(e2)-std::log10(e1));
 
  408   G4double b = std::log10(xs2) - a*std::log10(e2);
 
  409   G4double sigma = a*std::log10(e) + b;
 
  410   G4double value = (std::pow(10.,sigma));
 
  450  integrdiff = uniformRand;
 
  456  cosTheta= std::cos(theta*
pi/180);
 
G4double LogLogInterpolate(G4double e1, G4double e2, G4double e, G4double xs1, G4double xs2)
 
static G4Electron * ElectronDefinition()
 
G4double QuadInterpolator(G4double e11, G4double e12, G4double e21, G4double e22, G4double x11, G4double x12, G4double x21, G4double x22, G4double t1, G4double t2, G4double t, G4double e)
 
G4double LowEnergyLimit() const 
 
G4Material * FindOrBuildMaterial(const G4String &name, G4bool isotopes=true, G4bool warning=false)
 
G4MicroElecElasticModel(const G4ParticleDefinition *p=0, const G4String &nam="MicroElecElasticModel")
 
G4double Theta(G4ParticleDefinition *aParticleDefinition, G4double k, G4double integrDiff)
 
G4double GetKineticEnergy() const 
 
CLHEP::Hep3Vector G4ThreeVector
 
G4double HighEnergyLimit() const 
 
std::vector< double > eTdummyVec
 
G4double lowEnergyLimitOfModel
 
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
 
TriDimensionMap eDiffCrossSectionData
 
static G4NistManager * Instance()
 
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
 
const G4String & GetParticleName() const 
 
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
 
void SetHighEnergyLimit(G4double)
 
G4GLOB_DLL std::ostream G4cout
 
virtual G4double CrossSectionPerVolume(const G4Material *material, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax)
 
G4double LinLogInterpolate(G4double e1, G4double e2, G4double e, G4double xs1, G4double xs2)
 
const G4ThreeVector & GetMomentumDirection() const 
 
G4double LinLinInterpolate(G4double e1, G4double e2, G4double e, G4double xs1, G4double xs2)
 
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
 
virtual G4double FindValue(G4double e, G4int componentId=0) const 
 
virtual G4bool LoadData(const G4String &argFileName)
 
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
 
G4double GetTotNbOfAtomsPerVolume() const 
 
virtual ~G4MicroElecElasticModel()
 
G4ParticleChangeForGamma * fParticleChangeForGamma
 
const G4Material * GetBaseMaterial() const 
 
G4double RandomizeCosTheta(G4double k)
 
void SetProposedKineticEnergy(G4double proposedKinEnergy)
 
void ProposeTrackStatus(G4TrackStatus status)
 
void SetLowEnergyLimit(G4double)
 
static const G4double pos
 
G4ParticleChangeForGamma * GetParticleChangeForGamma()