136   for ( std::vector<G4PhysicsTable*>::iterator it = 
fAngleBank.begin();
 
  138     if ( (*it) ) (*it)->clearAndDestroy();
 
  162   for(jEl = 0 ; jEl < numOfEl; ++jEl) 
 
  172       G4cout<<
"G4NuclNuclDiffuseElastic::Initialise() the element: " 
  173             <<(*theElementTable)[jEl]->GetName()<<
G4endl;
 
  222   if      (iZ == 1 && iA == 1) theDef = 
theProton;
 
  225   else if (iZ == 2 && iA == 3) theDef = 
G4He3::He3();
 
  226   else if (iZ == 2 && iA == 4) theDef = 
theAlpha;
 
  240   G4double cost = 1 - 0.5*std::fabs(tMand)/ptot2;
 
  242   if( cost >= 1.0 )      cost = 1.0;  
 
  243   else if( cost <= -1.0) cost = -1.0;
 
  245   G4double thetaCMS = std::acos(cost);
 
  277   if( z && (kRt > kRtC) )
 
  309   if      (iZ == 1 && iA == 1) theDef = 
theProton;
 
  312   else if (iZ == 2 && iA == 3) theDef = 
G4He3::He3();
 
  313   else if (iZ == 2 && iA == 4) theDef = 
theAlpha;
 
  327   G4double cost    = 1 - 0.5*std::fabs(tMand)/ptot2;
 
  329   if( cost >= 1.0 )      cost = 1.0;  
 
  330   else if( cost <= -1.0) cost = -1.0;
 
  332   G4double thetaCMS = std::acos(cost);
 
  359   if      (iZ == 1 && iA == 1) theDef = 
theProton;
 
  362   else if (iZ == 2 && iA == 3) theDef = 
G4He3::He3();
 
  363   else if (iZ == 2 && iA == 4) theDef = 
theAlpha;
 
  377   G4double cost = 1 - 0.5*std::fabs(tMand)/ptot2;
 
  379   if( cost >= 1.0 )      cost = 1.0;  
 
  380   else if( cost <= -1.0) cost = -1.0;
 
  382   G4double thetaCMS = std::acos(cost);
 
  402   G4double sigma, bzero, bzero2, bonebyarg, bonebyarg2, damp, damp2;
 
  415   bzero2     = bzero*bzero;    
 
  419   bonebyarg2 = bonebyarg*bonebyarg;  
 
  423     diffuse = 0.63*
fermi;
 
  431     diffuse = 0.63*
fermi;
 
  460   sigma += mode2k2*bone2 + e2dk3t*bzero*bone;
 
  461   sigma += kr2*bonebyarg2;
 
  479   G4double sigma, bzero, bzero2, bonebyarg, bonebyarg2, damp, damp2;
 
  492   bzero2     = bzero*bzero;    
 
  496   bonebyarg2 = bonebyarg*bonebyarg;  
 
  500     diffuse = 0.63*
fermi;
 
  509     diffuse = 0.63*
fermi;
 
  523     G4double sinHalfTheta  = std::sin(0.5*theta);
 
  524     G4double sinHalfTheta2 = sinHalfTheta*sinHalfTheta;
 
  550   sigma += mode2k2*bone2; 
 
  551   sigma += e2dk3t*bzero*bone;
 
  554   sigma += kr2*bonebyarg2;  
 
  572   theta = std::sqrt(alpha);
 
  576   G4double sigma, bzero, bzero2, bonebyarg, bonebyarg2, damp, damp2;
 
  589   bzero2     = bzero*bzero;    
 
  593   bonebyarg2 = bonebyarg*bonebyarg;  
 
  597     diffuse = 0.63*
fermi;
 
  606     diffuse = 0.63*
fermi;
 
  621     G4double sinHalfTheta2 = sinHalfTheta*sinHalfTheta;
 
  647   sigma += mode2k2*bone2; 
 
  648   sigma += e2dk3t*bzero*bone;
 
  651   sigma += kr2*bonebyarg2;  
 
  709   G4double t     = 2*p*p*( 1 - std::cos(theta) ); 
 
  723   G4double norm, result, theta1, theta2, thetaMax, sum = 0.;
 
  733   if (thetaMax > 
pi) thetaMax = 
pi;
 
  742   for(i = 1; i <= iMax; i++)
 
  744     theta1 = (i-1)*thetaMax/iMax; 
 
  745     theta2 = i*thetaMax/iMax;
 
  750       result = 0.5*(theta1 + theta2);
 
  754   if (i > iMax ) result = 0.5*(theta1 + theta2);
 
  760   if(result < 0.) result = 0.;
 
  761   if(result > thetaMax) result = thetaMax;
 
  778   G4double totElab = std::sqrt(m1*m1+p*p);
 
  817   G4int iMomentum, iAngle;  
 
  839   G4double kinE = std::sqrt(momentum*momentum + m1*m1) - m1;
 
  841   for( iMomentum = 0; iMomentum < 
fEnergyBin; iMomentum++)
 
  845     if( kinE < fEnergyVector->GetLowEdgeEnergy(iMomentum) ) 
break;
 
  850   if ( iMomentum >= fEnergyBin ) iMomentum = fEnergyBin-1;   
 
  851   if ( iMomentum < 0 )           iMomentum = 0; 
 
  854   if (iMomentum == fEnergyBin -1 || iMomentum == 0 )   
 
  860     for(iAngle = 0; iAngle < 
fAngleBin-1; iAngle++)
 
  862       if( position < (*(*
fAngleTable)(iMomentum))(iAngle) ) 
break;
 
  864     if (iAngle >= fAngleBin-1) iAngle = fAngleBin-2;
 
  879     for(iAngle = 0; iAngle < 
fAngleBin-1; iAngle++)
 
  882       if( position > (*(*
fAngleTable)(iMomentum))(iAngle) ) 
break;
 
  884     if (iAngle >= fAngleBin-1) iAngle = fAngleBin-2;
 
  902     for(iAngle = 0; iAngle < fAngleBin-1; iAngle++)
 
  905       if( position > (*(*
fAngleTable)(iMomentum))(iAngle) ) 
break;
 
  907     if (iAngle >= fAngleBin-1) iAngle = fAngleBin-2;
 
  921     randAngle = W1*theta1 + W2*theta2;
 
  948     G4cout<<
"G4NuclNuclDiffuseElastic::Initialise() the element with Z = " 
  949           <<Z<<
"; and A = "<<A<<
G4endl;
 
  969   G4double alpha1, alpha2, alphaMax, alphaCoulomb, delta = 0., sum = 0.;
 
  984     partMom     = std::sqrt( kinE*(kinE + 2*m1) );
 
  990     if(alphaMax > 
pi) alphaMax = 
pi;
 
 1018       alpha1 = alphaCoulomb + delth*(j-1);
 
 1020       alpha2 = alpha1 + delth;
 
 1027       angleVector->
PutValue( j-1 , alpha1, sum ); 
 
 1045  G4double x1, x2, y1, y2, randAngle;
 
 1049     randAngle = (*fAngleTable)(iMomentum)->GetLowEdgeEnergy(iAngle);
 
 1056       iAngle = (*fAngleTable)(iMomentum)->GetVectorLength() - 1;
 
 1058     y1 = (*(*fAngleTable)(iMomentum))(iAngle-1);
 
 1059     y2 = (*(*fAngleTable)(iMomentum))(iAngle);
 
 1061     x1 = (*fAngleTable)(iMomentum)->GetLowEdgeEnergy(iAngle-1);
 
 1062     x2 = (*fAngleTable)(iMomentum)->GetLowEdgeEnergy(iAngle);
 
 1064     if ( x1 == x2 )   randAngle = x2;
 
 1067       if ( y1 == y2 ) randAngle = x1 + ( x2 - x1 )*
G4UniformRand();
 
 1070         randAngle = x1 + ( position - y1 )*( x2 - x1 )/( y2 - y1 );
 
 1109   t = 
SampleT( theParticle, ptot, A);
 
 1112   if(!(t < 0.0 || t >= 0.0)) 
 
 1116       G4cout << 
"G4NuclNuclDiffuseElastic:WARNING: A = " << A 
 
 1117              << 
" mom(GeV)= " << plab/
GeV  
 1118              << 
" S-wave will be sampled"  
 1125     G4cout <<
" t= " << t << 
" tmax= " << tmax 
 
 1126            << 
" ptot= " << ptot << 
G4endl;
 
 1139   else if( cost <= -1.0) 
 
 1146     sint = std::sqrt((1.0-cost)*(1.0+cost));
 
 1150     G4cout << 
"cos(t)=" << cost << 
" std::sin(t)=" << sint << 
G4endl;
 
 1152   G4ThreeVector v1(sint*std::cos(phi),sint*std::sin(phi),cost);
 
 1154   G4LorentzVector nlv1(v1.x(),v1.y(),v1.z(),std::sqrt(ptot*ptot + m1*m1));
 
 1193   G4double cost = std::cos(thetaCMS);
 
 1201   else if( cost <= -1.0) 
 
 1208     sint = std::sqrt((1.0-cost)*(1.0+cost));
 
 1212     G4cout << 
"cos(tcms)=" << cost << 
" std::sin(tcms)=" << sint << 
G4endl;
 
 1214   G4ThreeVector v1(sint*std::cos(phi),sint*std::sin(phi),cost);
 
 1216   G4LorentzVector nlv1(v1.x(),v1.y(),v1.z(),std::sqrt(ptot*ptot + m1*m1));
 
 1254   G4double cost = std::cos(thetaLab);
 
 1262   else if( cost <= -1.0) 
 
 1269     sint = std::sqrt((1.0-cost)*(1.0+cost));
 
 1273     G4cout << 
"cos(tlab)=" << cost << 
" std::sin(tlab)=" << sint << 
G4endl;
 
 1275   G4ThreeVector v1(sint*std::cos(phi),sint*std::sin(phi),cost);
 
 1277   G4LorentzVector nlv1(v1.x(),v1.y(),v1.z(),std::sqrt(plab*plab + m1*m1));
 
 1303   G4cout<<
"G4NuclNuclDiffuseElastic::TestAngleTable() init the element with Z = " 
 1304           <<Z<<
"; and A = "<<A<<
G4endl;
 
 1313   G4double alpha1=0., alpha2=0., alphaMax=0., alphaCoulomb=0.;
 
 1314   G4double deltaL10 = 0., deltaL96 = 0., deltaAG = 0.;
 
 1315   G4double sumL10 = 0.,sumL96 = 0.,sumAG = 0.;
 
 1329   alphaMax = kRmax*kRmax/kR2;
 
 1331   if (alphaMax > 4.) alphaMax = 4.;  
 
 1333   alphaCoulomb = kRcoul*kRcoul/kR2;
 
 1338       fBeta       = a/std::sqrt(1+a*a);
 
 1354     alpha1 = alphaMax*(j-1)/fAngleBin;
 
 1355     alpha2 = alphaMax*( j )/fAngleBin;
 
 1357     if( ( alpha2 > alphaCoulomb ) && 
z ) 
fAddCoulomb = 
true;
 
 1362                                        alpha1, alpha2,epsilon);
 
 1372             <<sumL10<<
"\t"<<sumL96<<
"\t"<<sumAG<<
G4endl;
 
 1374     angleVector->
PutValue( j-1 , alpha1, sumL10 ); 
 
 1402   if     ( n  < 0 ) legPol = 0.;
 
 1403   else if( n == 0 ) legPol = 1.;
 
 1404   else if( n == 1 ) legPol = x;
 
 1405   else if( n == 2 ) legPol = (3.*x*x-1.)/2.;
 
 1406   else if( n == 3 ) legPol = (5.*x*x*x-3.*x)/2.;
 
 1407   else if( n == 4 ) legPol = (35.*x*x*x*x-30.*x*x+3.)/8.;
 
 1408   else if( n == 5 ) legPol = (63.*x*x*x*x*x-70.*x*x*x+15.*x)/8.;
 
 1409   else if( n == 6 ) legPol = (231.*x*x*x*x*x*x-315.*x*x*x*x+105.*x*x-5.)/16.;
 
 1414     legPol = std::sqrt( 2./(n*
CLHEP::pi*std::sin(theta+epsilon)) )*std::sin( (n+0.5)*theta+0.25*
CLHEP::pi );
 
 1426   G4double n2, cofn, shny, chny, fn, gn;
 
 1445   for( n = 1; n <= nMax; n++)
 
 1449     cofn = std::exp(-0.5*n2)/(n2+twox2);  
 
 1451     chny = std::cosh(n*y);
 
 1452     shny = std::sinh(n*y);
 
 1454     fn  = twox - twoxcos2xy*chny + n*sin2xy*shny;
 
 1455     gn  =        twoxsin2xy*chny + n*cos2xy*shny;
 
 1466   if(std::abs(x) < 0.0001)
 
 1473     outRe += 
GetErf(x) + cof1*(1-cos2xy)/twox;
 
 1474     outIm += cof1*sin2xy/twox;
 
 1524   order                  /= std::sqrt(2.);
 
 1527   G4complex a0            = 0.5*(1. + 4.*(1.+im*u2)*cosHalfThetaR2/3.)/sinThetaR;
 
 1528   G4complex a1            = 0.5*(1. + 2.*(1.+im*u2m2p3)*cosHalfThetaR2)/sinThetaR;
 
 1529   G4complex out           = gamma*(1. - a1*dTheta) - a0;
 
 1552   order                  /= std::sqrt(2.);
 
 1554   G4complex a0            = 0.5*(1. + 4.*(1.+im*u2)*cosHalfThetaR2/3.)/sinThetaR;
 
 1555   G4complex a1            = 0.5*(1. + 2.*(1.+im*u2m2p3)*cosHalfThetaR2)/sinThetaR;
 
 1556   G4complex out           = -gamma*(1. - a1*dTheta) - a0;
 
 1594   G4double sindTheta  = std::sin(dTheta);
 
 1595   G4double persqrt2   = std::sqrt(0.5);
 
 1628   for( n = 0; n < 
fMaxL; n++)
 
 1635     shiftN = std::exp( -0.5*(1.-im*
fEtaRatio)*T12b ) - 1.;
 
 1651   G4double T12b, 
a, aTemp, 
b2, sinThetaH = std::sin(0.5*theta);
 
 1652   G4double sinThetaH2 = sinThetaH*sinThetaH;
 
 1661   for( n = 1; n < 
fMaxL; n++)
 
 1663     T12b   = aTemp*std::exp(-b2/n)/
n;         
 
 1703     fBeta       = a/std::sqrt(1+a*a);
 
 1738     fBeta       = a/std::sqrt(1+a*a);
 
 1778   if( pN < 0. ) pN = 0.;
 
 1781   if( tN < 0. ) tN = 0.;
 
 1800       fBeta       = a/std::sqrt(1+a*a);
 
 1831   G4double proj_energy   = proj_mass + pTkin; 
 
 1832   G4double proj_momentum = std::sqrt(pTkin*(pTkin+2*proj_mass));
 
 1847   if( proj_momentum >= 1.2 )
 
 1849     fEtaRatio  = 0.13*(logS - 5.8579332)*std::pow(sMand,-0.18);
 
 1851   else if( proj_momentum >= 0.6 )
 
 1853     fEtaRatio = -75.5*(std::pow(proj_momentum,0.25)-0.95)/
 
 1854           (std::pow(3*proj_momentum,2.2)+1);     
 
 1858     fEtaRatio = 15.5*proj_momentum/(27*proj_momentum*proj_momentum*proj_momentum+2);
 
 1864   if( proj_momentum >= 10. ) 
 
 1871     if( proj_momentum >= 10.)
 
 1874         A0 = 100. - B0*std::log(3.0e7);
 
 1876         xsection = A0 + B0*std::log(proj_energy) - 11
 
 1877                   + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+
 
 1878                      0.93827*0.93827,-0.165);        
 
 1883       if(pParticle == tParticle) 
 
 1885         if( proj_momentum < 0.73 )
 
 1887           hnXsc = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) );
 
 1889         else if( proj_momentum < 1.05  )
 
 1891           hnXsc = 23 + 40*(std::log(proj_momentum/0.73))*
 
 1892                          (std::log(proj_momentum/0.73));
 
 1897               75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15);
 
 1903         if( proj_momentum < 0.8 )
 
 1905           hpXsc = 33+30*std::pow(std::log(proj_momentum/1.3),4.0);
 
 1907         else if( proj_momentum < 1.4 )
 
 1909           hpXsc = 33+30*std::pow(std::log(proj_momentum/0.95),2.0);
 
 1914               20.8*(std::pow(proj_momentum,2.0)-1.35)/
 
 1915                  (std::pow(proj_momentum,2.50)+0.95);
 
 1933   G4double sindTheta  = std::sin(dTheta);
 
 1940   order = std::abs(order); 
 
 1950     out  = 1. + 0.5*( (0.5-cosFresnel)*(0.5-cosFresnel)+(0.5-sinFresnel)*(0.5-sinFresnel) )*prof2; 
 
 1951     out += ( cosFresnel + sinFresnel - 1. )*prof;
 
 1955     out = 0.5*( (0.5-cosFresnel)*(0.5-cosFresnel)+(0.5-sinFresnel)*(0.5-sinFresnel) )*prof2;
 
 1968   const G4double cof[6] = { 76.18009172947146,     -86.50532032941677,
 
 1969                              24.01409824083091,      -1.231739572450155,
 
 1970                               0.1208650973866179e-2, -0.5395239384953e-5  } ;
 
 1974   tmp -= (z + 0.5) * std::log(tmp);
 
 1977   for ( j = 0; j <= 5; j++ )
 
 1982   return -tmp + std::log(2.5066282746310005*ser);
 
 1992   G4double modvalue, value2, fact1, fact2, arg, shift, bessel;
 
 1994   modvalue = std::fabs(value);
 
 1996   if ( value < 8.0 && value > -8.0 )
 
 1998     value2 = value*value;
 
 2000     fact1  = 57568490574.0 + value2*(-13362590354.0 
 
 2001                            + value2*( 651619640.7 
 
 2002                            + value2*(-11214424.18 
 
 2003                            + value2*( 77392.33017 
 
 2004                            + value2*(-184.9052456   ) ) ) ) );
 
 2006     fact2  = 57568490411.0 + value2*( 1029532985.0 
 
 2007                            + value2*( 9494680.718
 
 2008                            + value2*(59272.64853
 
 2009                            + value2*(267.8532712 
 
 2010                            + value2*1.0               ) ) ) );
 
 2012     bessel = fact1/fact2;
 
 2020     shift  = modvalue-0.785398164;
 
 2022     fact1  = 1.0 + value2*(-0.1098628627e-2 
 
 2023                  + value2*(0.2734510407e-4
 
 2024                  + value2*(-0.2073370639e-5 
 
 2025                  + value2*0.2093887211e-6    ) ) );
 
 2027     fact2  = -0.1562499995e-1 + value2*(0.1430488765e-3
 
 2028                               + value2*(-0.6911147651e-5 
 
 2029                               + value2*(0.7621095161e-6
 
 2030                               - value2*0.934945152e-7    ) ) );
 
 2032     bessel = std::sqrt(0.636619772/modvalue)*(std::cos(shift)*fact1 - arg*std::sin(shift)*fact2 );
 
 2044   G4double modvalue, value2, fact1, fact2, arg, shift, bessel;
 
 2046   modvalue = std::fabs(value);
 
 2048   if ( modvalue < 8.0 ) 
 
 2050     value2 = value*value;
 
 2052     fact1  = value*(72362614232.0 + value2*(-7895059235.0 
 
 2053                                   + value2*( 242396853.1
 
 2054                                   + value2*(-2972611.439 
 
 2055                                   + value2*( 15704.48260 
 
 2056                                   + value2*(-30.16036606  ) ) ) ) ) );
 
 2058     fact2  = 144725228442.0 + value2*(2300535178.0 
 
 2059                             + value2*(18583304.74
 
 2060                             + value2*(99447.43394 
 
 2061                             + value2*(376.9991397 
 
 2062                             + value2*1.0             ) ) ) );
 
 2063     bessel = fact1/fact2;
 
 2071     shift  = modvalue - 2.356194491;
 
 2073     fact1  = 1.0 + value2*( 0.183105e-2 
 
 2074                  + value2*(-0.3516396496e-4
 
 2075                  + value2*(0.2457520174e-5 
 
 2076                  + value2*(-0.240337019e-6          ) ) ) );
 
 2078     fact2 = 0.04687499995 + value2*(-0.2002690873e-3
 
 2079                           + value2*( 0.8449199096e-5
 
 2080                           + value2*(-0.88228987e-6
 
 2081                           + value2*0.105787412e-6       ) ) );
 
 2083     bessel = std::sqrt( 0.636619772/modvalue)*(std::cos(shift)*fact1 - arg*std::sin(shift)*fact2);
 
 2085     if (value < 0.0) bessel = -bessel;
 
G4double Legendre10(T &typeT, F f, G4double a, G4double b)
G4double lowestEnergyLimit
ThreeVector shoot(const G4int Ap, const G4int Af)
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4double CalculateNuclearRad(G4double A)
G4double Legendre96(T &typeT, F f, G4double a, G4double b)
void PutValue(size_t binNumber, G4double binValue, G4double dataValue)
G4double GetKineticEnergy() const 
G4NuclNuclDiffuseElastic()
CLHEP::Hep3Vector G4ThreeVector
G4double GetExpSin(G4double x)
G4double CalculateAm(G4double momentum, G4double n, G4double Z)
G4double fNuclearRadiusSquare
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
G4double SampleTableThetaCMS(const G4ParticleDefinition *aParticle, G4double p, G4double Z, G4double A)
G4double GetScatteringAngle(G4int iMomentum, G4int iAngle, G4double position)
G4double DampFactor(G4double z)
G4double GetExpCos(G4double x)
G4double GetDiffElasticProb(G4double theta)
G4complex AmplitudeNear(G4double theta)
G4double GetInvCoulombElasticXsc(const G4ParticleDefinition *particle, G4double tMand, G4double momentum, G4double A, G4double Z)
G4complex PhaseNear(G4double theta)
G4double fHalfRutThetaTg2
G4complex CoulombAmplitude(G4double theta)
G4double GetErf(G4double x)
G4ParticleDefinition * GetDefinition() const 
G4complex AmplitudeGla(G4double theta)
G4double GetDiffuseElasticSumXsc(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double A, G4double Z)
G4double GetCoulombElasticXsc(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double Z)
void CalculateCoulombPhaseZero()
G4double GetLowEdgeEnergy(size_t binNumber) const 
G4double GetDiffuseElasticXsc(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double A)
G4double CalculateParticleBeta(const G4ParticleDefinition *particle, G4double momentum)
std::vector< G4String > fElementNameVector
G4PhysicsLogVector * fEnergyVector
static G4NistManager * Instance()
G4double SampleThetaCMS(const G4ParticleDefinition *aParticle, G4double p, G4double A)
G4double AdaptiveGauss(T &typeT, F f, G4double a, G4double b, G4double e)
G4double Profile(G4double theta)
G4complex AmplitudeGG(G4double theta)
G4double GetTotalMomentum() const 
G4ParticleDefinition * theNeutron
G4ParticleDefinition * theDeuteron
const G4ParticleDefinition * thePionPlus
void SetMinEnergy(G4double anEnergy)
G4double CalculateCoulombPhase(G4int n)
std::complex< G4double > G4complex
G4IonTable * GetIonTable() const 
G4GLOB_DLL std::ostream G4cout
G4double fRutherfordTheta
G4double GetHadronNucleonXscNS(G4ParticleDefinition *pParticle, G4double pTkin, G4ParticleDefinition *tParticle)
static size_t GetNumberOfElements()
const G4ParticleDefinition * GetDefinition() const 
void CalculateRutherfordAnglePar()
void TestAngleTable(const G4ParticleDefinition *theParticle, G4double partMom, G4double Z, G4double A)
void InitParametersGla(const G4DynamicParticle *aParticle, G4double partMom, G4double Z, G4double A)
G4double fRutherfordRatio
G4ParticleDefinition * theProton
G4double GetIntegrandFunction(G4double theta)
G4ParticleDefinition * theAlpha
static G4Triton * Triton()
static G4Proton * Proton()
G4double BesselJone(G4double z)
static G4PionPlus * PionPlus()
std::vector< G4PhysicsTable * > fAngleBank
G4double GetInvElasticXsc(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double A, G4double Z)
G4double SampleT(const G4ParticleDefinition *aParticle, G4double p, G4double A)
G4double GetDiffElasticSumProb(G4double theta)
G4double fNuclearRadiusCof
static G4Neutron * Neutron()
virtual G4double SampleInvariantT(const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
G4complex GammaMore(G4double theta)
static const G4double A[nN]
const G4LorentzVector & Get4Momentum() const 
static G4Deuteron * Deuteron()
G4LorentzVector Get4Momentum() const 
G4double ThetaCMStoThetaLab(const G4DynamicParticle *aParticle, G4double tmass, G4double thetaCMS)
void InitialiseOnFly(G4double Z, G4double A)
G4double BesselJzero(G4double z)
G4double CalculateZommerfeld(G4double beta, G4double Z1, G4double Z2)
G4double GetPDGMass() const 
static G4ParticleTable * GetParticleTable()
void InitDynParameters(const G4ParticleDefinition *theParticle, G4double partMom)
G4double GetRatioGen(G4double theta)
G4complex GammaLess(G4double theta)
static G4PionMinus * PionMinus()
G4double ProfileNear(G4double theta)
G4double GetFresnelIntegrandXsc(G4double alpha)
G4double SampleTableT(const G4ParticleDefinition *aParticle, G4double p, G4double Z, G4double A)
const G4ParticleDefinition * fParticle
std::vector< G4double > fElementNumberVector
G4double GetAtomicMassAmu(const G4String &symb) const 
G4complex GetErfcInt(G4complex z)
static const double millibarn
static const double degree
void insertAt(size_t, G4PhysicsVector *)
G4complex GetErfInt(G4complex z)
void SetMaxEnergy(const G4double anEnergy)
G4double CalcMandelstamS(const G4double mp, const G4double mt, const G4double Plab)
G4double fCofAlphaCoulomb
virtual ~G4NuclNuclDiffuseElastic()
G4double GetLegendrePol(G4int n, G4double x)
std::vector< G4Element * > G4ElementTable
G4double lowEnergyRecoilLimit
static G4ElementTable * GetElementTable()
G4double GetPDGCharge() const 
static const G4double alpha
G4double GetSint(G4double x)
const G4ParticleDefinition * thePionMinus
G4complex AmplitudeSim(G4double theta)
G4double GetInvElasticSumXsc(const G4ParticleDefinition *particle, G4double tMand, G4double momentum, G4double A, G4double Z)
G4complex GetErfComp(G4complex z, G4int nMax)
G4double ThetaLabToThetaCMS(const G4DynamicParticle *aParticle, G4double tmass, G4double thetaLab)
G4double GetDiffElasticSumProbA(G4double alpha)
G4double IntegralElasticProb(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double A)
G4double lowEnergyLimitHE
static const double fermi
G4double SampleThetaLab(const G4HadProjectile *aParticle, G4double tmass, G4double A)
G4int GetBaryonNumber() const 
G4double GetTotalMomentum() const 
G4double GetCint(G4double x)
CLHEP::HepLorentzVector G4LorentzVector
G4PhysicsTable * fAngleTable
G4complex GammaLogarithm(G4complex xx)
G4double BesselOneByArg(G4double z)
void InitParameters(const G4ParticleDefinition *theParticle, G4double partMom, G4double Z, G4double A)