Geant4  10.01.p02
G4NeutronHPCaptureFS.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // neutron_hp -- source file
27 // J.P. Wellisch, Nov-1996
28 // A prototype of the low energy neutron transport model.
29 //
30 // 12-April-06 Enable IC electron emissions T. Koi
31 // 26-January-07 Add G4NEUTRONHP_USE_ONLY_PHOTONEVAPORATION flag
32 // 081024 G4NucleiPropertiesTable:: to G4NucleiProperties::
33 // 101203 Bugzilla/Geant4 Problem 1155 Lack of residual in some case
34 // 110430 Temporary solution in the case of being MF6 final state in Capture reaction (MT102)
35 //
36 #include "G4NeutronHPCaptureFS.hh"
37 #include "G4NeutronHPManager.hh"
38 #include "G4PhysicalConstants.hh"
39 #include "G4SystemOfUnits.hh"
40 #include "G4Gamma.hh"
41 #include "G4ReactionProduct.hh"
42 #include "G4Nucleus.hh"
43 #include "G4PhotonEvaporation.hh"
44 #include "G4Fragment.hh"
45 #include "G4IonTable.hh"
46 #include "G4NeutronHPDataUsed.hh"
47 
49  {
50  if ( theResult.Get() == NULL ) theResult.Put( new G4HadFinalState );
51  theResult.Get()->Clear();
52 
53  G4int i;
54 // prepare neutron
55  G4double eKinetic = theTrack.GetKineticEnergy();
56  const G4HadProjectile *incidentParticle = &theTrack;
57  G4ReactionProduct theNeutron( incidentParticle->GetDefinition() );
58  theNeutron.SetMomentum( incidentParticle->Get4Momentum().vect() );
59  theNeutron.SetKineticEnergy( eKinetic );
60 
61 // prepare target
63  G4Nucleus aNucleus;
64  G4double eps = 0.0001;
65  if(targetMass<500*MeV)
66  targetMass = ( G4NucleiProperties::GetNuclearMass( static_cast<G4int>(theBaseA+eps) , static_cast<G4int>(theBaseZ+eps) )) /
68  G4ThreeVector neutronVelocity = 1./G4Neutron::Neutron()->GetPDGMass()*theNeutron.GetMomentum();
69  G4double temperature = theTrack.GetMaterial()->GetTemperature();
70  theTarget = aNucleus.GetBiasedThermalNucleus(targetMass, neutronVelocity, temperature);
71 
72 // go to nucleus rest system
73  theNeutron.Lorentz(theNeutron, -1*theTarget);
74  eKinetic = theNeutron.GetKineticEnergy();
75 
76 // dice the photons
77 
78  G4ReactionProductVector * thePhotons = 0;
79  //if ( HasFSData() && !getenv ( "G4NEUTRONHP_USE_ONLY_PHOTONEVAPORATION" ) )
80  if ( HasFSData() && !G4NeutronHPManager::GetInstance()->GetUseOnlyPhotoEvaporation() )
81  {
82  //NDL has final state data
83  if ( hasExactMF6 )
84  {
85  theMF6FinalState.SetTarget(theTarget);
86  theMF6FinalState.SetNeutron(theNeutron);
87  thePhotons = theMF6FinalState.Sample( eKinetic );
88  }
89  else
90  thePhotons = theFinalStatePhotons.GetPhotons(eKinetic);
91  }
92  else
93  {
94  //NDL does not have final state data or forced to use PhotoEvaporation model
95  G4ThreeVector aCMSMomentum = theNeutron.GetMomentum()+theTarget.GetMomentum();
96  G4LorentzVector p4(aCMSMomentum, theTarget.GetTotalEnergy() + theNeutron.GetTotalEnergy());
97  G4Fragment nucleus(static_cast<G4int>(theBaseA+1), static_cast<G4int>(theBaseZ) ,p4);
98  G4PhotonEvaporation photonEvaporation;
99  // T. K. add
100  photonEvaporation.SetICM( TRUE );
101  G4FragmentVector* products = photonEvaporation.BreakItUp(nucleus);
102  G4FragmentVector::iterator it;
103  thePhotons = new G4ReactionProductVector;
104  for(it=products->begin(); it!=products->end(); it++)
105  {
106  G4ReactionProduct * theOne = new G4ReactionProduct;
107  // T. K. add
108  if ( (*it)->GetParticleDefinition() != 0 )
109  theOne->SetDefinition( (*it)->GetParticleDefinition() );
110  else
111  theOne->SetDefinition( G4Gamma::Gamma() ); // this definiion will be over writen
112 
113  // T. K. comment out below line
114  //theOne->SetDefinition( G4Gamma::Gamma() );
115  G4IonTable* theTable = G4IonTable::GetIonTable();
116  if( (*it)->GetMomentum().mag() > 10*MeV ) theOne->SetDefinition( theTable->GetIon(static_cast<G4int>(theBaseZ), static_cast<G4int>(theBaseA+1), 0 ) );
117 
118  //if ( (*i)->GetExcitationEnergy() > 0 )
119  if ( (*it)->GetExcitationEnergy() > 1.0e-2*eV )
120  {
121  G4double ex = (*it)->GetExcitationEnergy();
122  G4ReactionProduct* aPhoton = new G4ReactionProduct;
123  aPhoton->SetDefinition( G4Gamma::Gamma() );
124  aPhoton->SetMomentum( (*it)->GetMomentum().vect().unit() * ex );
125  //aPhoton->SetTotalEnergy( ex ); //will be calculated from momentum
126  thePhotons->push_back(aPhoton);
127  }
128 
129  theOne->SetMomentum( (*it)->GetMomentum().vect() * ( (*it)->GetMomentum().t() - (*it)->GetExcitationEnergy() ) / (*it)->GetMomentum().t() ) ;
130  //theOne->SetTotalEnergy( (*i)->GetMomentum().t() - (*i)->GetExcitationEnergy() ); //will be calculated from momentum
131  thePhotons->push_back(theOne);
132  delete *it;
133  }
134  delete products;
135  }
136 
137 // add them to the final state
138 
139  G4int nPhotons = 0;
140  if(thePhotons!=0) nPhotons=thePhotons->size();
141 
143  if ( DoNotAdjustFinalState() ) {
144 //Make at least one photon
145 //101203 TK
146  if ( nPhotons == 0 )
147  {
148  G4ReactionProduct * theOne = new G4ReactionProduct;
149  theOne->SetDefinition( G4Gamma::Gamma() );
150  G4double theta = pi*G4UniformRand();
151  G4double phi = twopi*G4UniformRand();
152  G4double sinth = std::sin(theta);
153  G4ThreeVector direction( sinth*std::cos(phi), sinth*std::sin(phi), std::cos(theta) );
154  theOne->SetMomentum( direction ) ;
155  thePhotons->push_back(theOne);
156  nPhotons++; // 0 -> 1
157  }
158 //One photon case: energy set to Q-value
159 //101203 TK
160  //if ( nPhotons == 1 )
161  if ( nPhotons == 1 && thePhotons->operator[](0)->GetDefinition()->GetBaryonNumber() == 0 )
162  {
163  G4ThreeVector direction = thePhotons->operator[](0)->GetMomentum().unit();
164 
165  G4double Q = G4IonTable::GetIonTable()->GetIonMass(static_cast<G4int>(theBaseZ), static_cast<G4int>(theBaseA), 0) + G4Neutron::Neutron()->GetPDGMass()
166  - G4IonTable::GetIonTable()->GetIonMass(static_cast<G4int>(theBaseZ), static_cast<G4int>(theBaseA+1), 0);
167 
168  thePhotons->operator[](0)->SetMomentum( Q*direction );
169  }
170 //
171  }
172 
173  // back to lab system
174  for(i=0; i<nPhotons; i++)
175  {
176  thePhotons->operator[](i)->Lorentz(*(thePhotons->operator[](i)), theTarget);
177  }
178 
179  // Recoil, if only one gamma
180  //if (1==nPhotons)
181  if ( nPhotons == 1 && thePhotons->operator[](0)->GetDefinition()->GetBaryonNumber() == 0 )
182  {
183  G4DynamicParticle * theOne = new G4DynamicParticle;
185  ->GetIon(static_cast<G4int>(theBaseZ), static_cast<G4int>(theBaseA+1), 0);
186  theOne->SetDefinition(aRecoil);
187  // Now energy;
188  // Can be done slightly better @
189  G4ThreeVector aMomentum = theTrack.Get4Momentum().vect()
190  +theTarget.GetMomentum()
191  -thePhotons->operator[](0)->GetMomentum();
192 
193  //TKDB 140520
194  //G4ThreeVector theMomUnit = aMomentum.unit();
195  //G4double aKinEnergy = theTrack.GetKineticEnergy()
196  // +theTarget.GetKineticEnergy(); // gammas come from Q-value
197  //G4double theResMass = aRecoil->GetPDGMass();
198  //G4double theResE = aRecoil->GetPDGMass()+aKinEnergy;
199  //G4double theAbsMom = std::sqrt(theResE*theResE - theResMass*theResMass);
200  //G4ThreeVector theMomentum = theAbsMom*theMomUnit;
201  //theOne->SetMomentum(theMomentum);
202 
203  theOne->SetMomentum(aMomentum);
204  theResult.Get()->AddSecondary(theOne);
205  }
206 
207  // Now fill in the gammas.
208  for(i=0; i<nPhotons; i++)
209  {
210  // back to lab system
211  G4DynamicParticle * theOne = new G4DynamicParticle;
212  theOne->SetDefinition(thePhotons->operator[](i)->GetDefinition());
213  theOne->SetMomentum(thePhotons->operator[](i)->GetMomentum());
214  theResult.Get()->AddSecondary(theOne);
215  delete thePhotons->operator[](i);
216  }
217  delete thePhotons;
218 
219 //101203TK
220  G4bool residual = false;
222  ->GetIon(static_cast<G4int>(theBaseZ), static_cast<G4int>(theBaseA+1), 0);
223  for ( G4int j = 0 ; j != theResult.Get()->GetNumberOfSecondaries() ; j++ )
224  {
225  if ( theResult.Get()->GetSecondary(j)->GetParticle()->GetDefinition() == aRecoil ) residual = true;
226  }
227 
228  if ( residual == false )
229  {
230  G4int nNonZero = 0;
231  G4LorentzVector p_photons(0,0,0,0);
232  for ( G4int j = 0 ; j != theResult.Get()->GetNumberOfSecondaries() ; j++ )
233  {
234  p_photons += theResult.Get()->GetSecondary(j)->GetParticle()->Get4Momentum();
235  // To many 0 momentum photons -> Check PhotonDist
236  if ( theResult.Get()->GetSecondary(j)->GetParticle()->Get4Momentum().e() > 0 ) nNonZero++;
237  }
238 
239  // Can we include kinetic energy here?
240  G4double deltaE = ( theTrack.Get4Momentum().e() + theTarget.GetTotalEnergy() )
241  - ( p_photons.e() + aRecoil->GetPDGMass() );
242 
243 //Add photons
244  if ( nPhotons - nNonZero > 0 )
245  {
246  //G4cout << "TKDB G4NeutronHPCaptureFS::ApplyYourself we will create additional " << nPhotons - nNonZero << " photons" << G4endl;
247  std::vector<G4double> vRand;
248  vRand.push_back( 0.0 );
249  for ( G4int j = 0 ; j != nPhotons - nNonZero - 1 ; j++ )
250  {
251  vRand.push_back( G4UniformRand() );
252  }
253  vRand.push_back( 1.0 );
254  std::sort( vRand.begin(), vRand.end() );
255 
256  std::vector<G4double> vEPhoton;
257  for ( G4int j = 0 ; j < (G4int)vRand.size() - 1 ; j++ )
258  {
259  vEPhoton.push_back( deltaE * ( vRand[j+1] - vRand[j] ) );
260  }
261  std::sort( vEPhoton.begin(), vEPhoton.end() );
262 
263  for ( G4int j = 0 ; j < nPhotons - nNonZero - 1 ; j++ )
264  {
265  //Isotopic in LAB OK?
266  G4double theta = pi*G4UniformRand();
267  G4double phi = twopi*G4UniformRand();
268  G4double sinth = std::sin(theta);
269  G4double en = vEPhoton[j];
270  G4ThreeVector tempVector(en*sinth*std::cos(phi), en*sinth*std::sin(phi), en*std::cos(theta) );
271 
272  p_photons += G4LorentzVector ( tempVector, tempVector.mag() );
273  G4DynamicParticle * theOne = new G4DynamicParticle;
274  theOne->SetDefinition( G4Gamma::Gamma() );
275  theOne->SetMomentum( tempVector );
276  theResult.Get()->AddSecondary(theOne);
277  }
278 
279 // Add last photon
280  G4DynamicParticle * theOne = new G4DynamicParticle;
281  theOne->SetDefinition( G4Gamma::Gamma() );
282 // For better momentum conservation
283  G4ThreeVector lastPhoton = -p_photons.vect().unit()*vEPhoton.back();
284  p_photons += G4LorentzVector( lastPhoton , lastPhoton.mag() );
285  theOne->SetMomentum( lastPhoton );
286  theResult.Get()->AddSecondary(theOne);
287  }
288 
289 //Add residual
290  G4DynamicParticle * theOne = new G4DynamicParticle;
291  G4ThreeVector aMomentum = theTrack.Get4Momentum().vect() + theTarget.GetMomentum()
292  - p_photons.vect();
293  theOne->SetDefinition(aRecoil);
294  theOne->SetMomentum( aMomentum );
295  theResult.Get()->AddSecondary(theOne);
296 
297  }
298 //101203TK END
299 
300 // clean up the primary neutron
302  return theResult.Get();
303  }
304 
305 #include <sstream>
307  {
308 
309  //TK110430 BEGIN
310  std::stringstream ss;
311  ss << static_cast<G4int>(Z);
312  G4String sZ;
313  ss >> sZ;
314  ss.clear();
315  ss << static_cast<G4int>(A);
316  G4String sA;
317  ss >> sA;
318 
319  ss.clear();
320  G4String sM;
321  if ( M > 0 )
322  {
323  ss << "m";
324  ss << M;
325  ss >> sM;
326  ss.clear();
327  }
328 
329  G4String element_name = theNames.GetName( static_cast<G4int>(Z)-1 );
330  G4String filenameMF6 = dirName+"/FSMF6/"+sZ+"_"+sA+sM+"_"+element_name;
331  //std::ifstream dummyIFS(filenameMF6, std::ios::in);
332  //if ( dummyIFS.good() == true ) hasExactMF6=true;
333  std::istringstream theData(std::ios::in);
334  G4NeutronHPManager::GetInstance()->GetDataStream(filenameMF6,theData);
335 
336  //TK110430 Only use MF6MT102 which has exactly same A and Z
337  //Even _nat_ do not select and there is no _nat_ case in ENDF-VII.0
338  if ( theData.good() == true ) {
339  hasExactMF6=true;
340  theMF6FinalState.Init(theData);
341  //theData.close();
342  return;
343  }
344  //TK110430 END
345 
346 
347  G4String tString = "/FS";
348  G4bool dbool;
349  G4NeutronHPDataUsed aFile = theNames.GetName(static_cast<G4int>(A), static_cast<G4int>(Z), M, dirName, tString, dbool);
350 
351  G4String filename = aFile.GetName();
352  SetAZMs( A, Z, M, aFile );
353  //theBaseA = A;
354  //theBaseZ = G4int(Z+.5);
355  if(!dbool || ( Z<2.5 && ( std::abs(theBaseZ - Z)>0.0001 || std::abs(theBaseA - A)>0.0001)))
356  {
357  hasAnyData = false;
358  hasFSData = false;
359  hasXsec = false;
360  return;
361  }
362  //std::ifstream theData(filename, std::ios::in);
363  //std::istringstream theData(std::ios::in);
364  theData.clear();
365  G4NeutronHPManager::GetInstance()->GetDataStream(filename,theData);
367  if(hasFSData)
368  {
372  }
373  //theData.close();
374  }
G4ReactionProductVector * GetPhotons(G4double anEnergy)
void SetTarget(G4ReactionProduct &aTarget)
static const double MeV
Definition: G4SIunits.hh:193
static G4double GetNuclearMass(const G4double A, const G4double Z)
void SetMomentum(const G4ThreeVector &momentum)
void Lorentz(const G4ReactionProduct &p1, const G4ReactionProduct &p2)
G4HadSecondary * GetSecondary(size_t i)
G4Cache< G4HadFinalState * > theResult
CLHEP::Hep3Vector G4ThreeVector
G4HadFinalState * ApplyYourself(const G4HadProjectile &theTrack)
static G4NeutronHPManager * GetInstance()
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
Definition: G4IonTable.cc:463
const G4double pi
G4NeutronHPPhotonDist theFinalStatePhotons
value_type & Get() const
Definition: G4Cache.hh:282
static const G4double eps
G4ParticleDefinition * GetDefinition() const
void GetDataStream(G4String, std::istringstream &iss)
G4NeutronHPDataUsed GetName(G4int A, G4int Z, G4String base, G4String rest, G4bool &active)
int G4int
Definition: G4Types.hh:78
G4NeutronHPEnAngCorrelation theMF6FinalState
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetStatusChange(G4HadFinalStateStatus aS)
std::vector< G4ReactionProduct * > G4ReactionProductVector
void InitAngular(std::istream &aDataFile)
G4ReactionProduct GetBiasedThermalNucleus(G4double aMass, G4ThreeVector aVelocity, G4double temp=-1) const
Definition: G4Nucleus.cc:108
#define G4UniformRand()
Definition: Randomize.hh:93
const G4ParticleDefinition * GetDefinition() const
bool G4bool
Definition: G4Types.hh:79
G4double GetIonMass(G4int Z, G4int A, G4int L=0, G4int lvl=0) const
Definition: G4IonTable.cc:1249
void SetNeutron(G4ReactionProduct &aNeutron)
G4double GetKineticEnergy() const
G4ErrorTarget * theTarget
Definition: errprop.cc:59
void InitEnergies(std::istream &aDataFile)
std::vector< G4Fragment * > G4FragmentVector
Definition: G4Fragment.hh:65
#define TRUE
Definition: globals.hh:55
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
static const G4double A[nN]
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &aFSType)
const G4LorentzVector & Get4Momentum() const
G4LorentzVector Get4Momentum() const
static G4IonTable * GetIonTable()
Definition: G4IonTable.hh:78
static const double eV
Definition: G4SIunits.hh:194
G4double GetTotalEnergy() const
G4bool InitMean(std::istream &aDataFile)
G4double GetPDGMass() const
G4DynamicParticle * GetParticle()
G4ThreeVector GetMomentum() const
G4double GetTemperature() const
Definition: G4Material.hh:182
virtual G4FragmentVector * BreakItUp(const G4Fragment &nucleus)
const G4Material * GetMaterial() const
G4ReactionProductVector * Sample(G4double anEnergy)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
void SetAZMs(G4double anA, G4double aZ, G4int aM, G4NeutronHPDataUsed used)
double G4double
Definition: G4Types.hh:76
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void Put(const value_type &val) const
Definition: G4Cache.hh:286
G4int GetNumberOfSecondaries() const
void Init(std::istream &aDataFile)
CLHEP::HepLorentzVector G4LorentzVector