Geant4  10.01.p02
G4ProtonEvaporationProbability.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4ProtonEvaporationProbability.cc 74869 2013-10-23 09:26:17Z gcosmo $
27 //
28 // J.M. Quesada (August2008). Based on:
29 //
30 // Hadronic Process: Nuclear De-excitations
31 // by V. Lara (Oct 1998)
32 //
33 // Modified:
34 // 03-09-2008 J.M. Quesada for external choice of inverse cross section option
35 // 17-11-2010 V.Ivanchenko integer Z and A
36 
38 #include "G4PhysicalConstants.hh"
39 #include "G4SystemOfUnits.hh"
40 #include "G4Log.hh"
41 #include "G4Exp.hh"
42 
44  G4EvaporationProbability(1,1,2,&theCoulombBarrier) // A,Z,Gamma,&theCoulombBarrier
45 {
47  ResidualAthrd = FragmentAthrd = U = 0.0;
48 }
49 
51 {}
52 
54  { return 1.0 + CCoeficient(fragment.GetZ_asInt()-GetZ());}
55 
57  { return 0.0; }
58 
60 {
61  // Data comes from
62  // Dostrovsky, Fraenkel and Friedlander
63  // Physical Review, vol 116, num. 3 1959
64  //
65  // const G4int size = 5;
66  // G4double Zlist[5] = { 10.0, 20.0, 30.0, 50.0, 70.0};
67  // G4double Cp[5] = { 0.50, 0.28, 0.20, 0.15, 0.10};
68  G4double C = 0.0;
69 
70  if (aZ >= 70) {
71  C = 0.10;
72  } else {
73  C = ((((0.15417e-06*aZ) - 0.29875e-04)*aZ + 0.21071e-02)*aZ - 0.66612e-01)*aZ + 0.98375;
74  }
75 
76  return C;
77 
78 }
79 
81 //J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections for protons
82 //OPT=0 Dostrovski's parameterization
83 //OPT=1 Chatterjee's parameterization
84 //OPT=2,4 Wellisch's parameterization
85 //OPT=3 Kalbach's parameterization
86 //
87 G4double
89 {
90  // G4cout<<" In G4ProtonEVaporationProbability OPTxs="<<OPTxs<<G4endl;
91  // G4cout<<" In G4ProtonEVaporationProbability useSICB="<<useSICB<<G4endl;
92 
93  theA=GetA();
94  theZ=GetZ();
95  ResidualA=fragment.GetA_asInt()-theA;
96  ResidualZ=fragment.GetZ_asInt()-theZ;
97 
99  FragmentA=fragment.GetA_asInt();
101 
102  U=fragment.GetExcitationEnergy();
103 
104  if (OPTxs==0) {std::ostringstream errOs;
105  errOs << "We should'n be here (OPT =0) at evaporation cross section calculation (protons)!!" <<G4endl;
106  throw G4HadronicException(__FILE__, __LINE__, errOs.str());
107  return 0.;}
108  else if( OPTxs==1 ) return GetOpt1( K);
109  else if( OPTxs==2 ||OPTxs==4) return GetOpt2( K);
110  else if (OPTxs==3 ) return GetOpt3( K);
111  else{
112  std::ostringstream errOs;
113  errOs << "BAD PROTON CROSS SECTION OPTION AT EVAPORATION!!" <<G4endl;
114  throw G4HadronicException(__FILE__, __LINE__, errOs.str());
115  return 0.;
116  }
117 }
118 
119 //********************* OPT=1 : Chatterjee's cross section *********************
120 //(fitting to cross section from Bechetti & Greenles OM potential)
121 
123 {
124  G4double Kc=K;
125 
126  // JMQ xsec is set constat above limit of validity
127  if (K > 50*MeV) { Kc = 50*MeV; }
128 
129  G4double landa, landa0, landa1, mu, mum0, mu1,nu, nu0, nu1, nu2,xs;
130  G4double p, p0, p1, p2,Ec,delta,q,r,ji;
131 
132  p0 = 15.72;
133  p1 = 9.65;
134  p2 = -449.0;
135  landa0 = 0.00437;
136  landa1 = -16.58;
137  mum0 = 244.7;
138  mu1 = 0.503;
139  nu0 = 273.1;
140  nu1 = -182.4;
141  nu2 = -1.872;
142  delta=0.;
143 
144  Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta);
145  p = p0 + p1/Ec + p2/(Ec*Ec);
146  landa = landa0*ResidualA + landa1;
147 
148  G4double resmu1 = fG4pow->powZ(ResidualA,mu1);
149  mu = mum0*resmu1;
150  nu = resmu1*(nu0 + nu1*Ec + nu2*(Ec*Ec));
151  q = landa - nu/(Ec*Ec) - 2*p*Ec;
152  r = mu + 2*nu/Ec + p*(Ec*Ec);
153 
154  ji=std::max(Kc,Ec);
155  if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;}
156  else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;}
157  if (xs <0.0) {xs=0.0;}
158 
159  return xs;
160 }
161 
162 //************* OPT=2 : Welisch's proton reaction cross section ***************
163 
165 {
166 
167  G4double eekin,ekin,ff1,ff2,ff3,r0,fac,fac1,fac2,b0,xine_th(0);
168 
169  // This is redundant when the Coulomb barrier is overimposed to all
170  // cross sections
171  // It should be kept when Coulomb barrier only imposed at OPTxs=2
172 
174  { return 0.0; }
175 
176  eekin=K;
177  G4int rnneu=ResidualA-ResidualZ;
178  ekin=eekin/1000;
179  r0=1.36*1.e-15;
180  fac=pi*r0*r0;
181  b0=2.247-0.915*(1.-1./ResidualAthrd);
182  fac1=b0*(1.-1./ResidualAthrd);
183  fac2=1.;
184  if(rnneu > 1.5) { fac2 = fG4pow->logZ(rnneu); }
185  xine_th= 1.e+31*fac*fac2*(1.+ResidualAthrd-fac1);
186  xine_th=(1.-0.15*G4Exp(-ekin))*xine_th/(1.00-0.0007*ResidualA);
187  ff1=0.70-0.0020*ResidualA;
188  ff2=1.00+1/G4double(ResidualA);
189  ff3=0.8+18/G4double(ResidualA)-0.002*ResidualA;
190  G4double log10E = G4Log(ekin)/fG4pow->logZ(10);
191  fac=1.-(1./(1.+G4Exp(-8.*ff1*(log10E + 1.37*ff2))));
192  xine_th=xine_th*(1.+ff3*fac);
193  ff1=1.-1/G4double(ResidualA)-0.001*ResidualA;
194  ff2=1.17-2.7/G4double(ResidualA)-0.0014*ResidualA;
195  fac=-8.*ff1*(log10E + 2.0*ff2);
196  fac=1./(1.+G4Exp(fac));
197  xine_th=xine_th*fac;
198  if (xine_th < 0.0){
199  std::ostringstream errOs;
200  G4cout<<"WARNING: negative Wellisch cross section "<<G4endl;
201  errOs << "RESIDUAL: A=" << ResidualA << " Z=" << ResidualZ <<G4endl;
202  errOs <<" xsec("<<ekin<<" MeV) ="<<xine_th <<G4endl;
203  throw G4HadronicException(__FILE__, __LINE__, errOs.str());
204  }
205  return xine_th;
206 }
207 
208 // *********** OPT=3 : Kalbach's cross sections (from PRECO code)*************
210 {
211  // ** p from becchetti and greenlees (but modified with sub-barrier
212  // ** correction function and xp2 changed from -449)
213 
214  G4double landa, landa0, landa1, mu, mum0, mu1,nu, nu0, nu1, nu2;
215  G4double p, p0, p1, p2;
216  p0 = 15.72;
217  p1 = 9.65;
218  p2 = -300.;
219  landa0 = 0.00437;
220  landa1 = -16.58;
221  mum0 = 244.7;
222  mu1 = 0.503;
223  nu0 = 273.1;
224  nu1 = -182.4;
225  nu2 = -1.872;
226 
227  // parameters for proton cross section refinement
228  /*
229  G4double afit,bfit,a2,b2;
230  afit=-0.0785656;
231  bfit=5.10789;
232  a2= -0.00089076;
233  b2= 0.0231597;
234  */
235  G4double ec,ecsq,xnulam,etest(0.),ra(0.),a,w,c,signor(1.),signor2,sig;
236  G4double b,ecut,cut,ecut2,geom,elab;
237 
238  G4double flow = 1.e-18;
239  G4double spill= 1.e+18;
240 
241  if (ResidualA <= 60) { signor = 0.92; }
242  else if (ResidualA < 100) { signor = 0.8 + ResidualA*0.002; }
243 
244  ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra);
245  ecsq = ec * ec;
246  p = p0 + p1/ec + p2/ecsq;
247  landa = landa0*ResidualA + landa1;
248  a = fG4pow->powZ(ResidualA,mu1);
249  mu = mum0 * a;
250  nu = a* (nu0+nu1*ec+nu2*ecsq);
251 
252  c =std::min(3.15,ec*0.5);
253  w = 0.7 * c / 3.15;
254 
255  xnulam = nu / landa;
256  if (xnulam > spill) { xnulam=0.; }
257  if (xnulam >= flow) { etest =std::sqrt(xnulam) + 7.; }
258 
259  a = -2.*p*ec + landa - nu/ecsq;
260  b = p*ecsq + mu + 2.*nu/ec;
261  ecut = 0.;
262  cut = a*a - 4.*p*b;
263  if (cut > 0.) { ecut = std::sqrt(cut); }
264  ecut = (ecut-a) / (p+p);
265  ecut2 = ecut;
266  //JMQ 290310 for avoiding unphysical increase below minimum (at ecut)
267  // ecut<0 means that there is no cut with energy axis, i.e. xs is set
268  // to 0 bellow minimum
269  // if (cut < 0.) ecut2 = ecut - 2.;
270  if (cut < 0.) { ecut2 = ecut; }
271  elab = K * FragmentA /G4double(ResidualA);
272  sig = 0.;
273  if (elab <= ec) { //start for E<Ec
274  if (elab > ecut2) { sig = (p*elab*elab+a*elab+b) * signor; }
275 
276  signor2 = (ec-elab-c) / w;
277  signor2 = 1. + G4Exp(signor2);
278  sig = sig / signor2;
279  } //end for E<=Ec
280  else{ //start for E>Ec
281  sig = (landa*elab+mu+nu/elab) * signor;
282  geom = 0.;
283 
284  if (xnulam < flow || elab < etest)
285  {
286  if (sig <0.0) {sig=0.0;}
287  return sig;
288  }
289  geom = std::sqrt(theA*K);
290  geom = 1.23*ResidualAthrd + ra + 4.573/geom;
291  geom = 31.416 * geom * geom;
292  sig = std::max(geom,sig);
293 
294  } //end for E>Ec
295  return sig;
296 }
297 
virtual G4double CalcBetaParam(const G4Fragment &fragment)
static const double MeV
Definition: G4SIunits.hh:193
G4double GetCoulombBarrier(G4int ARes, G4int ZRes, G4double U) const
const G4double pi
const G4double nu1
G4double a
Definition: TRTMaterials.hh:39
int G4int
Definition: G4Types.hh:78
G4double logZ(G4int Z) const
Definition: G4Pow.hh:163
G4GLOB_DLL std::ostream G4cout
G4double Z13(G4int Z) const
Definition: G4Pow.hh:127
G4int GetA_asInt() const
Definition: G4Fragment.hh:243
const G4double landa1
const G4double nu0
const G4double p2
const G4double p1
const G4double mu1
G4double G4Log(G4double x)
Definition: G4Log.hh:230
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
virtual G4double CalcAlphaParam(const G4Fragment &fragment)
const G4double p0
T max(const T t1, const T t2)
brief Return the largest of the two arguments
const G4double nu2
virtual G4double CrossSection(const G4Fragment &fragment, G4double K)
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
G4int GetZ_asInt() const
Definition: G4Fragment.hh:248
static const G4double fac
#define G4endl
Definition: G4ios.hh:61
G4double powZ(G4int Z, G4double y) const
Definition: G4Pow.hh:256
double G4double
Definition: G4Types.hh:76
const G4double landa0
static const G4double b0
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:260
const G4double r0