Geant4  10.01.p02
G4HadronElasticPhysics.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4HadronElasticPhysics.cc 89171 2015-03-23 14:58:41Z gcosmo $
27 //
28 //---------------------------------------------------------------------------
29 //
30 // ClassName: G4HadronElasticPhysics
31 //
32 // Author: 23 November 2006 V. Ivanchenko
33 //
34 // Modified:
35 // 21.03.2007 V.Ivanchenko Use G4BGGNucleonElasticXS and G4BGGPionElasticXS;
36 // Reduce thresholds for HE and Q-models to zero
37 // 03.06.2010 V.Ivanchenko cleanup constructors and ConstructProcess method
38 // 29.07.2010 V.Ivanchenko rename this class from G4HadronHElasticPhysics to
39 // G4HadronElasticPhysics, old version of the class
40 // is renamed to G4HadronElasticPhysics93
41 //
42 //----------------------------------------------------------------------------
43 //
44 // CHIPS for sampling scattering for p and n
45 // Glauber model for samplimg of high energy pi+- (E > 1GeV)
46 // LHEP sampling model for the other particle
47 // BBG cross sections for p, n and pi+-
48 // LHEP cross sections for other particles
49 
51 
52 #include "G4SystemOfUnits.hh"
53 #include "G4ParticleDefinition.hh"
54 #include "G4ProcessManager.hh"
55 
56 #include "G4MesonConstructor.hh"
57 #include "G4BaryonConstructor.hh"
58 #include "G4IonConstructor.hh"
59 
61 #include "G4HadronElastic.hh"
62 #include "G4ChipsElasticModel.hh"
64 #include "G4AntiNuclElastic.hh"
65 
66 #include "G4BGGNucleonElasticXS.hh"
67 #include "G4BGGPionElasticXS.hh"
68 
70 
73 
74 #include "G4CrossSectionElastic.hh"
75 
76 // factory
78 //
80 //
84 
86  : G4VPhysicsConstructor("hElasticWEL_CHIPS"), verbose(ver)
87 {
88  if(verbose > 1) {
89  G4cout << "### G4HadronElasticPhysics: " << GetPhysicsName()
90  << G4endl;
91  }
92 }
93 
95 {}
96 
98 {
99  // G4cout << "G4HadronElasticPhysics::ConstructParticle" << G4endl;
100  G4MesonConstructor pMesonConstructor;
101  pMesonConstructor.ConstructParticle();
102 
103  G4BaryonConstructor pBaryonConstructor;
104  pBaryonConstructor.ConstructParticle();
105 
106  G4IonConstructor pConstructor;
107  pConstructor.ConstructParticle();
108 }
109 
111 {
112  if(wasActivated) { return; }
113  wasActivated = true;
114 
115  const G4double elimitPi = 1.0*GeV;
116  const G4double elimitAntiNuc = 100.*MeV;
117  const G4double delta = 0.1*MeV;
118  if(verbose > 1) {
119  G4cout << "### HadronElasticPhysics::ConstructProcess: Elimit for pi "
120  << elimitPi/GeV << " GeV" << G4endl;
121  G4cout << " for anti-neuclei "
122  << elimitAntiNuc/GeV << " GeV" << G4endl;
123  }
124 
125  G4AntiNuclElastic* anuc = new G4AntiNuclElastic();
126  anuc->SetMinEnergy(elimitAntiNuc);
127  G4CrossSectionElastic* anucxs =
129 
130  G4HadronElastic* lhep0 = new G4HadronElastic();
131  G4HadronElastic* lhep1 = new G4HadronElastic();
132  G4HadronElastic* lhep2 = new G4HadronElastic();
133  lhep1->SetMaxEnergy(elimitPi+delta);
134  lhep2->SetMaxEnergy(elimitAntiNuc+delta);
135 
138 
140  he->SetMinEnergy(elimitPi);
141 
142  aParticleIterator->reset();
143  while( (*aParticleIterator)() )
144  {
145  G4ParticleDefinition* particle = aParticleIterator->value();
146  G4ProcessManager* pmanager = particle->GetProcessManager();
147  G4String pname = particle->GetParticleName();
148  if(pname == "anti_lambda" ||
149  pname == "anti_neutron" ||
150  pname == "anti_omega-" ||
151  pname == "anti_sigma-" ||
152  pname == "anti_sigma+" ||
153  pname == "anti_xi-" ||
154  pname == "anti_xi0" ||
155  pname == "lambda" ||
156  pname == "omega-" ||
157  pname == "sigma-" ||
158  pname == "sigma+" ||
159  pname == "xi-" ||
160  pname == "alpha" ||
161  pname == "deuteron" ||
162  pname == "triton"
163  ) {
164 
166  hel->RegisterMe(lhep0);
167  pmanager->AddDiscreteProcess(hel);
168  if(verbose > 1) {
169  G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
170  << " added for " << particle->GetParticleName() << G4endl;
171  }
172 
173  } else if(pname == "proton") {
174 
176  //hel->AddDataSet(new G4BGGNucleonElasticXS(particle));
177 
178  // hel->AddDataSet(new G4ChipsProtonElasticXS());
180 
181  hel->RegisterMe(chipsp);
182  pmanager->AddDiscreteProcess(hel);
183  if(verbose > 1) {
184  G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
185  << " added for " << particle->GetParticleName() << G4endl;
186  }
187 
188  } else if(pname == "neutron") {
189 
191  //neutronProcess->AddDataSet(new G4BGGNucleonElasticXS(particle));
192  //neutronProcess->AddDataSet(G4CrossSectionDataSetRegistry::Instance()->GetCrossSectionDataSet(G4ChipsNeutronElasticXS::Default_Name()));
195  if(verbose > 1) {
196  G4cout << "### HadronElasticPhysics: "
198  << " added for " << particle->GetParticleName() << G4endl;
199  }
200 
201  } else if (pname == "pi+" || pname == "pi-") {
202 
204  hel->AddDataSet(new G4BGGPionElasticXS(particle));
205  hel->RegisterMe(lhep1);
206  hel->RegisterMe(he);
207  pmanager->AddDiscreteProcess(hel);
208  if(verbose > 1) {
209  G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
210  << " added for " << particle->GetParticleName() << G4endl;
211  }
212 
213  } else if(pname == "kaon-" ||
214  pname == "kaon+" ||
215  pname == "kaon0S" ||
216  pname == "kaon0L"
217  ) {
218 
220  hel->RegisterMe(lhep0);
221  pmanager->AddDiscreteProcess(hel);
222  if(verbose > 1) {
223  G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
224  << " added for " << particle->GetParticleName() << G4endl;
225  }
226 
227  } else if(
228  pname == "anti_proton" ||
229  pname == "anti_alpha" ||
230  pname == "anti_deuteron" ||
231  pname == "anti_triton" ||
232  pname == "anti_He3" ) {
233 
235  hel->AddDataSet(anucxs);
236  hel->RegisterMe(lhep2);
237  hel->RegisterMe(anuc);
238  pmanager->AddDiscreteProcess(hel);
239  }
240  }
241 }
242 
243 
245 {
246  return neutronModel;
247 }
248 
250 {
251  return neutronProcess;
252 }
253 
254 
static const double MeV
Definition: G4SIunits.hh:193
G4HadronElastic * GetNeutronModel()
G4HadronicProcess * GetNeutronProcess()
G4int AddDiscreteProcess(G4VProcess *aProcess, G4int ord=ordDefault)
static void ConstructParticle()
#define G4ThreadLocal
Definition: tls.hh:89
static void ConstructParticle()
G4ProcessManager * GetProcessManager() const
int G4int
Definition: G4Types.hh:78
G4ComponentAntiNuclNuclearXS * GetComponentCrossSection()
const G4String & GetParticleName() const
static void ConstructParticle()
void RegisterMe(G4HadronicInteraction *a)
void SetMinEnergy(G4double anEnergy)
void AddDataSet(G4VCrossSectionDataSet *aDataSet)
G4GLOB_DLL std::ostream G4cout
bool G4bool
Definition: G4Types.hh:79
#define aParticleIterator
static G4ThreadLocal G4bool wasActivated
G4_DECLARE_PHYSCONSTR_FACTORY(G4HadronElasticPhysics)
static G4CrossSectionDataSetRegistry * Instance()
static const double GeV
Definition: G4SIunits.hh:196
const G4String & GetPhysicsName() const
const G4String & GetProcessName() const
Definition: G4VProcess.hh:408
static G4ThreadLocal G4HadronElastic * neutronModel
static G4ThreadLocal G4HadronicProcess * neutronProcess
void SetMaxEnergy(const G4double anEnergy)
static const char * Default_Name()
#define G4endl
Definition: G4ios.hh:61
double G4double
Definition: G4Types.hh:76