81 crossSectionHandler(0), energySpectrum(0)
108 G4Exception(
"G4LivermoreIonisationModel::Initialise",
110 "Livermore Ionisation Model is applicable only to electrons");
132 const size_t nbins = 20;
135 G4int ndec =
G4int(std::log10(emax/emin) + 0.5);
136 if(ndec <= 0) { ndec = 1; }
141 emin,emax,nbins*ndec);
153 G4cout <<
"Livermore Ionisation model is initialized " << G4endl
186 G4Exception(
"G4LivermoreIonisationModel::ComputeCrossSectionPerAtom",
188 "The cross section handler is not correctly initialized");
201 G4cout <<
"Cross section for delta emission > "
202 << cutEnergy/
keV <<
" keV at "
203 << energy/
keV <<
" keV and Z = " << iZ <<
" --> "
222 const G4double* theAtomicNumDensityVector =
226 for (
size_t iel=0; iel<NumberOfElements; iel++ )
228 G4int iZ = (
G4int)((*theElementVector)[iel]->GetZ());
235 sPower += e * cs * theAtomicNumDensityVector[iel];
238 sPower += esp * theAtomicNumDensityVector[iel];
244 G4cout <<
"Stopping power < " << cutEnergy/
keV
245 <<
" keV at " << kineticEnergy/
keV <<
" keV = "
246 << sPower/(
keV/
mm) <<
" keV/mm" << G4endl;
255 std::vector<G4DynamicParticle*>* fvect,
281 kineticEnergy, shellIndex);
283 if (energyDelta == 0.)
293 fvect->push_back(delta);
297 G4double totalMomentum = std::sqrt(kineticEnergy*(kineticEnergy + 2*electron_mass_c2));
300 finalP = finalP.unit();
307 G4double finalKinEnergy = kineticEnergy - energyDelta - theEnergyDeposit;
308 if(finalKinEnergy < 0.0)
310 theEnergyDeposit += finalKinEnergy;
311 finalKinEnergy = 0.0;
319 if (theEnergyDeposit < 0)
321 G4cout <<
"G4LivermoreIonisationModel: Negative energy deposit: "
322 << theEnergyDeposit/
eV <<
" eV" <<
G4endl;
323 theEnergyDeposit = 0.0;
331 G4cout <<
"-----------------------------------------------------------" <<
G4endl;
332 G4cout <<
"Energy balance from G4LivermoreIonisation" <<
G4endl;
333 G4cout <<
"Incoming primary energy: " << kineticEnergy/
keV <<
" keV" <<
G4endl;
334 G4cout <<
"-----------------------------------------------------------" <<
G4endl;
335 G4cout <<
"Outgoing primary energy: " << finalKinEnergy/
keV <<
" keV" <<
G4endl;
337 G4cout <<
"Fluorescence: " << (bindingEnergy-theEnergyDeposit)/
keV <<
" keV" << G4endl;
338 G4cout <<
"Local energy deposit " << theEnergyDeposit/
keV <<
" keV" <<
G4endl;
341 G4cout <<
"-----------------------------------------------------------" <<
G4endl;
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
G4double fIntrinsicLowEnergyLimit
G4double LowEnergyLimit() const
virtual void PrintData() const =0
G4ParticleChangeForLoss * GetParticleChangeForLoss()
G4int NumberOfShells(G4int Z) const
std::vector< G4Element * > G4ElementVector
G4double GetCrossSectionAboveThresholdForElement(G4double energy, G4double cutEnergy, G4int Z)
G4double GetKineticEnergy() const
CLHEP::Hep3Vector G4ThreeVector
G4double HighEnergyLimit() const
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
G4int SelectRandomShell(G4int Z, G4double e) const
G4VEmAngularDistribution * GetAngularDistribution()
G4VEnergySpectrum * energySpectrum
G4double BindingEnergy() const
G4AtomicTransitionManager * transitionManager
G4eIonisationCrossSectionHandler * crossSectionHandler
const G4ElementVector * GetElementVector() const
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
G4ParticleChangeForLoss * fParticleChange
virtual G4double SampleEnergy(G4int Z, G4double minKineticEnergy, G4double maxKineticEnergy, G4double kineticEnergy, G4int shell=0, const G4ParticleDefinition *pd=0) const =0
G4double FindValue(G4int Z, G4double e) const
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
virtual G4double AverageEnergy(G4int Z, G4double minKineticEnergy, G4double maxKineticEnergy, G4double kineticEnergy, G4int shell=0, const G4ParticleDefinition *pd=0) const =0
G4GLOB_DLL std::ostream G4cout
G4double fIntrinsicHighEnergyLimit
const G4ThreeVector & GetMomentumDirection() const
void SetProposedKineticEnergy(G4double proposedKinEnergy)
G4VEMDataSet * BuildMeanFreePathForMaterials(const G4DataVector *energyCuts=0)
virtual G4double MaxEnergyOfSecondaries(G4double kineticEnergy, G4int Z=0, const G4ParticleDefinition *pd=0) const =0
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX)
const G4double * GetAtomicNumDensityVector() const
virtual G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy)
void LoadShellData(const G4String &dataFile)
G4LivermoreIonisationModel(const G4ParticleDefinition *p=0, const G4String &processName="LowEnergyIoni")
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
virtual ~G4LivermoreIonisationModel()
G4double energy(const ThreeVector &p, const G4double m)
virtual G4double Excitation(G4int Z, G4double kineticEnergy) const =0
void SetAngularDistribution(G4VEmAngularDistribution *)
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
static G4Electron * Electron()
size_t GetNumberOfElements() const
G4double bindingEnergy(G4int A, G4int Z)
static G4AtomicTransitionManager * Instance()
G4AtomicShell * Shell(G4int Z, size_t shellIndex) const
G4int SelectRandomAtom(const G4MaterialCutsCouple *couple, G4double e) const
G4ThreeVector GetMomentum() const
const G4Material * GetMaterial() const