Geant4  10.01.p02
G4hImpactIonisation.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // ------------------------------------------------------------
28 // G4hImpactIonisation
29 //
30 // $Id: G4hImpactIonisation.hh 70904 2013-06-07 10:34:25Z gcosmo $
31 //
32 // Author: Maria Grazia Pia (MariaGrazia.Pia@ge.infn.it)
33 //
34 // 08 Sep 2008 - MGP - Created (initially based on G4hLowEnergyIonisation)
35 // Added PIXE capabilities
36 // Partial clean-up of the implementation (more needed)
37 // Calculation of MicroscopicCrossSection delegated to specialised class
38 //
39 // ------------------------------------------------------------
40 
41 // Class Description:
42 // Impact Ionisation process of charged hadrons and ions
43 // Initially based on G4hLowEnergyIonisation, to be subject to redesign
44 // and further evolution of physics capabilities
45 //
46 // The physics model of G4hLowEnergyIonisation is described in
47 // CERN-OPEN-99-121 and CERN-OPEN-99-300.
48 //
49 // Documentation available in:
50 // M.G. Pia et al., PIXE Simulation With Geant4,
51 // IEEE Trans. Nucl. Sci., vol. 56, no. 6, pp. 3614-3649, Dec. 2009.
52 
53 // ------------------------------------------------------------
54 
55 #ifndef G4HIMPACTIONISATION
56 #define G4HIMPACTIONISATION 1
57 
58 #include <map>
59 #include <CLHEP/Units/PhysicalConstants.h>
60 
61 #include "globals.hh"
62 #include "G4hRDEnergyLoss.hh"
63 #include "G4DataVector.hh"
64 #include "G4AtomicDeexcitation.hh"
66 
67 class G4VLowEnergyModel;
68 class G4VParticleChange;
70 class G4PhysicsTable;
72 class G4Track;
73 class G4Step;
74 
76 {
77 public: // With description
78 
79  G4hImpactIonisation(const G4String& processName = "hImpactIoni");
80  // The ionisation process for hadrons/ions to be include in the
81  // UserPhysicsList
82 
84  // Destructor
85 
87  // True for all charged hadrons/ions
88 
89  void BuildPhysicsTable(const G4ParticleDefinition& aParticleType) ;
90  // Build physics table during initialisation
91 
92  G4double GetMeanFreePath(const G4Track& track,
93  G4double previousStepSize,
95  // Return MeanFreePath until delta-electron production
96 
97  void PrintInfoDefinition() const;
98  // Print out of the class parameters
99 
101  // Definition of the boundary proton energy. For higher energies
102  // Bethe-Bloch formula is used, for lower energies a parametrisation
103  // of the energy losses is performed. Default is 2 MeV.
104 
106  // Set of the boundary proton energy. For lower energies
107  // the Free Electron Gas model is used for the energy losses.
108  // Default is 1 keV.
109 
111  // Set of the boundary antiproton energy. For higher energies
112  // Bethe-Bloch formula is used, for lower energies parametrisation
113  // of the energy losses is performed. Default is 2 MeV.
114 
116  // Set of the boundary antiproton energy. For lower energies
117  // the Free Electron Gas model is used for the energy losses.
118  // Default is 1 keV.
119 
121  G4double previousStepSize,
122  G4double currentMinimumStep,
123  G4double& currentSafety);
124  // Calculation of the step limit due to ionisation losses
125 
127  const G4String& dedxTable);
128  // This method defines the electron ionisation parametrisation method
129  // via the name of the table. Default is "ICRU_49p".
130 
131  void SetNuclearStoppingPowerModel(const G4String& dedxTable)
132  {theNuclearTable = dedxTable; SetNuclearStoppingOn();};
133  // This method defines the nuclear ionisation parametrisation method
134  // via the name of the table. Default is "ICRU_49".
135 
136  // ---- MGP ---- The following design of On/Off is nonsense; to be modified
137  // in a following design iteration
138 
139  void SetNuclearStoppingOn() {nStopping = true;};
140  // This method switch on calculation of the nuclear stopping power.
141 
142  void SetNuclearStoppingOff() {nStopping = false;};
143  // This method switch off calculation of the nuclear stopping power.
144 
145  void SetBarkasOn() {theBarkas = true;};
146  // This method switch on calculation of the Barkas and Bloch effects.
147 
148  void SetBarkasOff() {theBarkas = false;};
149  // This method switch off calculation of the Barkas and Bloch effects.
150 
151  void SetPixe(const G4bool /* val */ ) {pixeIsActive = true;};
152  // This method switches atomic relaxation on/off; currently always on
153 
154  G4VParticleChange* AlongStepDoIt(const G4Track& trackData ,
155  const G4Step& stepData ) ;
156  // Function to determine total energy deposition on the step
157 
158  G4VParticleChange* PostStepDoIt(const G4Track& track,
159  const G4Step& Step ) ;
160  // Simulation of delta-ray production.
161 
162  G4double ComputeDEDX(const G4ParticleDefinition* aParticle,
163  const G4MaterialCutsCouple* couple,
164  G4double kineticEnergy);
165  // This method returns electronic dE/dx for protons or antiproton
166 
168  // Set threshold energy for fluorescence
169 
171  // Set threshold energy for Auger electron production
172 
174  // Set Auger electron production flag on/off
175 
176  // Accessors to configure PIXE
182 
183 protected:
184 
185 private:
186 
187  void InitializeMe();
189  void BuildLossTable(const G4ParticleDefinition& aParticleType);
190  // void BuildDataForFluorescence(const G4ParticleDefinition& aParticleType);
191  void BuildLambdaTable(const G4ParticleDefinition& aParticleType);
193  {protonTable = dedxTable ;};
194  // This method defines the ionisation parametrisation method via its name
195 
197  {antiprotonTable = dedxTable;};
198 
200  G4double kineticEnergy,
201  G4double atomicNumber,
202  G4double deltaCutInEnergy) const;
203 
204  G4double GetConstraints(const G4DynamicParticle* particle,
205  const G4MaterialCutsCouple* couple);
206  // Function to determine StepLimit
207 
209  G4double kineticEnergy) const;
210 
212  G4double kineticEnergy) const;
213 
215  G4double kineticEnergy,
216  G4double particleMass) const;
217  // This method returns average energy loss due to delta-rays emission with
218  // energy higher than the cut energy for given material.
219 
220  G4double BarkasTerm(const G4Material* material,
221  G4double kineticEnergy) const;
222  // Function to compute the Barkas term for protons
223 
224  G4double BlochTerm(const G4Material* material,
225  G4double kineticEnergy,
226  G4double cSquare) const;
227  // Function to compute the Bloch term for protons
228 
230  const G4MaterialCutsCouple* material,
231  G4double meanLoss,
232  G4double step) const;
233  // Function to sample electronic losses
234 
235  // hide assignment operator
238 
239 private:
240  // private data members ...............................
248 
249  // std::map<G4int,G4double,std::less<G4int> > totalCrossSectionMap;
250 
251  // name of parametrisation table of electron stopping power
255 
256  // interval of parametrisation of electron stopping power
261 
262  // flag of parametrisation of nucleus stopping power
265 
271 
272  const G4double paramStepLimit; // parameter limits the step at low energy
273 
274  G4double fdEdx; // computed in GetContraints
278  G4double initialMass; // mass to calculate Lambda tables
280 
288 
290 
291 };
292 
293 
295  G4double,
296  G4double currentMinimumStep,
297  G4double&)
298 {
300 
301  // ---- MGP ---- The following line, taken as is from G4hLowEnergyIonisation,
302  // is meaningless: currentMinimumStep is passed by value,
303  // therefore any local modification to it has no effect
304 
305  if ((step > 0.) && (step < currentMinimumStep)) currentMinimumStep = step ;
306 
307  return step ;
308 }
309 
310 
312 {
313  // ---- MGP ---- Better criterion for applicability to be defined;
314  // now hard-coded particle mass > 0.1 * proton_mass
315 
316  return (particle.GetPDGCharge() != 0.0 && particle.GetPDGMass() > CLHEP::proton_mass_c2*0.1);
317 }
318 
319 #endif
320 
321 
322 
323 
324 
325 
326 
327 
G4double condition(const G4ErrorSymMatrix &m)
G4hImpactIonisation & operator=(const G4hImpactIonisation &right)
void SetPixeProjectileMaxEnergy(G4double energy)
void BuildPhysicsTable(const G4ParticleDefinition &aParticleType)
void BuildLossTable(const G4ParticleDefinition &aParticleType)
void SetProtonElectronicStoppingPowerModel(const G4String &dedxTable)
G4bool IsApplicable(const G4ParticleDefinition &)
void SetPixeCrossSectionL(const G4String &name)
void SetHighEnergyForProtonParametrisation(G4double energy)
const G4DynamicParticle * GetDynamicParticle() const
G4double DeltaRaysEnergy(const G4MaterialCutsCouple *couple, G4double kineticEnergy, G4double particleMass) const
G4double GetConstraints(const G4DynamicParticle *particle, const G4MaterialCutsCouple *couple)
G4String name
Definition: TRTMaterials.hh:40
G4VLowEnergyModel * theNuclearStoppingModel
const G4MaterialCutsCouple * GetMaterialCutsCouple() const
void SetPixeCrossSectionK(const G4String &name)
void SetNuclearStoppingPowerModel(const G4String &dedxTable)
G4double AntiProtonParametrisedDEDX(const G4MaterialCutsCouple *couple, G4double kineticEnergy) const
G4hImpactIonisation(const G4String &processName="hImpactIoni")
G4VLowEnergyModel * theIonEffChargeModel
const G4double paramStepLimit
G4VLowEnergyModel * theIonChuFluctuationModel
void SetPixe(const G4bool)
G4double MicroscopicCrossSection(const G4ParticleDefinition &aParticleType, G4double kineticEnergy, G4double atomicNumber, G4double deltaCutInEnergy) const
G4VLowEnergyModel * theIonYangFluctuationModel
void SetCutForSecondaryPhotons(G4double cut)
void SetPixeCrossSectionM(const G4String &name)
void BuildLambdaTable(const G4ParticleDefinition &aParticleType)
G4PixeCrossSectionHandler * pixeCrossSectionHandler
G4AtomicDeexcitation atomicDeexcitation
void SetCutForAugerElectrons(G4double cut)
G4double BarkasTerm(const G4Material *material, G4double kineticEnergy) const
bool G4bool
Definition: G4Types.hh:79
G4double ElectronicLossFluctuation(const G4DynamicParticle *particle, const G4MaterialCutsCouple *material, G4double meanLoss, G4double step) const
G4double ProtonParametrisedDEDX(const G4MaterialCutsCouple *couple, G4double kineticEnergy) const
void SetElectronicStoppingPowerModel(const G4ParticleDefinition *aParticle, const G4String &dedxTable)
void SetPixeProjectileMinEnergy(G4double energy)
Definition: G4Step.hh:76
void ActivateAugerElectronProduction(G4bool val)
G4PhysicsTable * theMeanFreePathTable
void SetHighEnergyForAntiProtonParametrisation(G4double energy)
void SetLowEnergyForProtonParametrisation(G4double energy)
G4VLowEnergyModel * protonModel
G4double GetPDGMass() const
G4double energy(const ThreeVector &p, const G4double m)
Definition: Step.hh:41
G4VLowEnergyModel * antiprotonModel
void SetLowEnergyForAntiProtonParametrisation(G4double energy)
void SetAntiProtonElectronicStoppingPowerModel(const G4String &dedxTable)
double G4double
Definition: G4Types.hh:76
G4double GetMeanFreePath(const G4Track &track, G4double previousStepSize, enum G4ForceCondition *condition)
G4ForceCondition
G4double BlochTerm(const G4Material *material, G4double kineticEnergy, G4double cSquare) const
G4double GetPDGCharge() const
G4double ComputeDEDX(const G4ParticleDefinition *aParticle, const G4MaterialCutsCouple *couple, G4double kineticEnergy)
G4VParticleChange * PostStepDoIt(const G4Track &track, const G4Step &Step)
G4VParticleChange * AlongStepDoIt(const G4Track &trackData, const G4Step &stepData)
G4double GetContinuousStepLimit(const G4Track &track, G4double previousStepSize, G4double currentMinimumStep, G4double &currentSafety)
G4VLowEnergyModel * betheBlochModel
void PrintInfoDefinition() const