Geant4  10.01.p02
G4PreCompoundNeutron.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4PreCompoundNeutron.cc 90591 2015-06-04 13:45:29Z gcosmo $
27 //
28 // -------------------------------------------------------------------
29 //
30 // GEANT4 Class file
31 //
32 //
33 // File name: G4PreCompoundNeutron
34 //
35 // Author: V.Lara
36 //
37 // Modified:
38 // 21.08.2008 J. M. Quesada add choice of options
39 // 10.02.2009 J. M. Quesada set default opt3
40 // 20.08.2010 V.Ivanchenko added G4Pow and G4PreCompoundParameters pointers
41 // use int Z and A and cleanup
42 //
43 
44 #include "G4PreCompoundNeutron.hh"
45 #include "G4SystemOfUnits.hh"
46 #include "G4Neutron.hh"
47 
49  : G4PreCompoundNucleon(G4Neutron::Neutron(), &theNeutronCoulombBarrier)
50 {
51  ResidualA = GetRestA();
52  ResidualZ = GetRestZ();
53  theA = GetA();
54  theZ = GetZ();
58 }
59 
61 {}
62 
64 {
65  G4double rj = 0.0;
66  if(nParticles > 0) {
67  rj = static_cast<G4double>(nParticles - nCharged)/
68  static_cast<G4double>(nParticles);
69  }
70  return rj;
71 }
72 
74 //J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections
75 //OPT=0 Dostrovski's parameterization
76 //OPT=1,2 Chatterjee's paramaterization
77 //OPT=3,4 Kalbach's parameterization
78 //
80 {
81  ResidualA = GetRestA();
82  ResidualZ = GetRestZ();
83  theA = GetA();
84  theZ = GetZ();
88 
89  if (OPTxs==0) { return GetOpt0( K); }
90  else if( OPTxs <= 2) { return GetOpt12( K); }
91  else { return GetOpt34( K); }
92 }
93 
95 {
96  return 0.76+2.2/ResidualAthrd;
97 }
98 
100 {
101  // return (2.12/std::pow(GetRestA(),2.0/3.0)-0.05)*MeV/GetAlpha();
102  return (2.12/(ResidualAthrd*ResidualAthrd)-0.05)*MeV/GetAlpha();
103 }
104 
105 //********************* OPT=1,2 : Chatterjee's cross section ***************
106 //(fitting to cross section from Bechetti & Greenles OM potential)
107 
109 {
110  G4double Kc=K;
111 
112  // Pramana (Bechetti & Greenles) for neutrons is chosen
113 
114  // JMQ xsec is set constat above limit of validity
115  if (K > 50*MeV) { Kc = 50*MeV; }
116 
117  const G4double landa0 = 18.57;
118  const G4double landa1 = -22.93;
119  const G4double mm0 = 381.7;
120  const G4double mu1 = 24.31;
121  const G4double nu0 = 0.172;
122  const G4double nu1 = -15.39;
123  const G4double nu2 = 804.8;
124 
125  G4double landa = landa0/ResidualAthrd + landa1;
127  G4double nu = nu0*ResidualAthrd*ResidualA + nu1*ResidualAthrd*ResidualAthrd + nu2 ;
128  G4double xs = landa*Kc + mu + nu/Kc;
129 
130  xs = std::max(xs, 0.0);
131  return xs;
132 }
133 
134 // *********** OPT=3,4 : Kalbach's cross sections (from PRECO code)*************
136 {
137 
138  const G4double flow = 1.e-18;
139 
140  // PRECO xs for neutrons is choosen
141  const G4double p0 = -312.;
142  const G4double landa0 = 12.10;
143  const G4double landa1= -11.27;
144  const G4double mm0 = 234.1;
145  const G4double mu1 = 38.26;
146  const G4double nu0 = 1.55;
147  const G4double nu1 = -106.1;
148  const G4double nu2 = 1280.8;
149  const G4double ra = 0.0;
150 
151  G4double signor = 1.0;
152  if(ResidualA < 40) { signor =0.7 + ResidualA*0.0075; }
153  else if(ResidualA > 210) { signor = 1. + (ResidualA-210)/250.; }
154 
155  G4double landa = landa0/ResidualAthrd + landa1;
157  G4double nu = nu0*ResidualAthrd*ResidualA + nu1*ResidualAthrd*ResidualAthrd + nu2;
158 
159  // JMQ very low energy behaviour corrected (problem for A (apprx.)>60)
160  if (nu < 0.) { nu = -nu; }
161 
162  G4double ec = 0.5;
163  G4double ecsq = 0.25;
164  G4double p = p0;
165  G4double xnulam = 1.;
166  G4double etest = 32.;
167  // ** etest is the energy above which the rxn cross section is
168  // ** compared with the geometrical limit and the max taken.
169  // ** xnulam here is a dummy value to be used later.
170 
171  G4double a = -2.*p*ec + landa - nu/ecsq;
172  G4double b = p*ecsq + mu + 2.*nu/ec;
173  G4double ecut = 0.;
174  G4double cut = a*a - 4.*p*b;
175  if (cut > 0.) { ecut = std::sqrt(cut); }
176  ecut = (ecut-a) / (2*p);
177  if (cut < 0.) { ecut -= 2.; }
178 
179  G4double elab = K * FragmentA / G4double(ResidualA);
180  G4double sig = 0.;
181 
182  if (elab <= ec) {
183  if (elab > ecut) { sig = std::max(0.0,(p*elab*elab+a*elab+b) * signor); }
184 
185  } else {
186  sig = (landa*elab+mu+nu/elab) * signor;
187  G4double geom = 0.;
188  if (xnulam >= flow && elab >= etest) {
189  geom = std::sqrt(theA*K);
190  geom = 1.23*ResidualAthrd + ra + 4.573/geom;
191  geom = 31.416 * geom * geom;
192  }
193  sig = std::max(geom,sig);
194  }
195  return sig;
196 }
G4double GetOpt12(G4double K)
static const double MeV
Definition: G4SIunits.hh:193
G4double ResidualA13() const
G4double GetOpt34(G4double K)
G4int GetA() const
const G4double nu1
G4double GetOpt0(G4double ekin)
G4double a
Definition: TRTMaterials.hh:39
int G4int
Definition: G4Types.hh:78
virtual G4double CrossSection(G4double ekin)
const G4double mm0
G4double Z13(G4int Z) const
Definition: G4Pow.hh:127
const G4double landa1
const G4double nu0
G4int GetRestZ() const
const G4double mu1
const G4double p0
virtual G4double GetAlpha()
T max(const T t1, const T t2)
brief Return the largest of the two arguments
const G4double nu2
G4int GetRestA() const
G4int GetZ() const
virtual G4double GetBeta()
double G4double
Definition: G4Types.hh:76
const G4double landa0
virtual G4double GetRj(G4int NumberParticles, G4int NumberCharged)