Geant4  10.01.p02
G4PreCompoundDeuteron.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4PreCompoundDeuteron.cc 90591 2015-06-04 13:45:29Z gcosmo $
27 //
28 // -------------------------------------------------------------------
29 //
30 // GEANT4 Class file
31 //
32 //
33 // File name: G4PreCompoundDeuteron
34 //
35 // Author: V.Lara
36 //
37 // Modified:
38 // 21.08.2008 J. M. Quesada add choice of options
39 // 20.08.2010 V.Ivanchenko added G4Pow and G4PreCompoundParameters pointers
40 // use int Z and A and cleanup
41 //
42 
43 #include "G4PreCompoundDeuteron.hh"
44 #include "G4SystemOfUnits.hh"
45 #include "G4Deuteron.hh"
46 
48  : G4PreCompoundIon(G4Deuteron::Deuteron(), &theDeuteronCoulombBarrier)
49 {
50  theA = GetA();
51  theZ = GetZ();
52  ResidualA = ResidualZ = 0;
54  FragmentA = theA;
55 }
56 
58 {}
59 
61 {
62  return G4double((N-1)*(N-2)*(P-1)*P)/2.0;
63 }
64 
66 {
67  return 16.0/G4double(A);
68 }
69 
71 {
72  G4double rj = 0.0;
73  if(nCharged >=1 && (nParticles-nCharged) >=1) {
74  G4double denominator = G4double(nParticles*(nParticles-1));
75  rj = 2*nCharged*(nParticles-nCharged)/denominator;
76  }
77  return rj;
78 }
79 
81 //J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections
82 //OPT=0 Dostrovski's parameterization
83 //OPT=1,2 Chatterjee's paramaterization
84 //OPT=3,4 Kalbach's parameterization
85 //
87 {
88  ResidualA = GetRestA();
89  ResidualZ = GetRestZ();
90  theA = GetA();
91  theZ = GetZ();
95 
96  if (OPTxs==0) { return GetOpt0( K); }
97  else if( OPTxs <= 2) { return GetOpt12( K); }
98  else { return GetOpt34( K); }
99 }
100 
102 {
103  G4double C = 0.0;
104  G4int aZ = theZ + ResidualZ;
105  if (aZ >= 70)
106  {
107  C = 0.10;
108  }
109  else
110  {
111  C = ((((0.15417e-06*aZ) - 0.29875e-04)*aZ + 0.21071e-02)*aZ
112  - 0.66612e-01)*aZ + 0.98375;
113  }
114  return 1.0 + 0.5*C;
115 }
116 //
117 //********************* OPT=1,2 : Chatterjee's cross section ********************
118 //(fitting to cross section from Bechetti & Greenles OM potential)
119 
121 {
122  G4double Kc = K;
123 
124  // JMQ xsec is set constat above limit of validity
125  if (K > 50*MeV) { Kc = 50*MeV; }
126 
127  G4double landa ,mu ,nu ,p , Ec,q,r,ji,xs;
128 
129  const G4double p0 = -38.21;
130  const G4double p1 = 922.6;
131  const G4double p2 = -2804.;
132  const G4double landa0 = -0.0323;
133  const G4double landa1 = -5.48;
134  const G4double mm0 = 336.1;
135  const G4double mu1 = 0.48;
136  const G4double nu0 = 524.3;
137  const G4double nu1 = -371.8;
138  const G4double nu2 = -5.924;
139  const G4double delta = 1.2;
140 
141  Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta);
142  p = p0 + p1/Ec + p2/(Ec*Ec);
143  landa = landa0*ResidualA + landa1;
144  G4double resmu1 = g4pow->powZ(ResidualA,mu1);
145  mu = mm0*resmu1;
146  nu = resmu1*(nu0 + nu1*Ec + nu2*(Ec*Ec));
147  q = landa - nu/(Ec*Ec) - 2*p*Ec;
148  r = mu + 2*nu/Ec + p*(Ec*Ec);
149 
150  ji=std::max(Kc,Ec);
151  if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;}
152  else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;}
153 
154  xs = std::max(xs, 0.0);
155  return xs;
156 }
157 
158 // *********** OPT=3,4 : Kalbach's cross sections (from PRECO code)*************
160 // ** d from o.m. of perey and perey
161 {
162  const G4double flow = 1.e-18;
163  const G4double spill= 1.e+18;
164 
165  const G4double p0 = 0.798;
166  const G4double p1 = 420.3;
167  const G4double p2 = -1651.;
168  const G4double landa0 = 0.00619;
169  const G4double landa1 = -7.54;
170  const G4double mm0 = 583.5;
171  const G4double mu1 = 0.337;
172  const G4double nu0 = 421.8;
173  const G4double nu1 = -474.5;
174  const G4double nu2 = -3.592;
175 
176  const G4double ra = 0.80;
177  const G4double signor = 1.0;
178 
179  //JMQ 13/02/09 increase of reduced radius to lower the barrier
180  // ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra);
181  G4double ec = 1.44 * theZ * ResidualZ / (1.7*ResidualAthrd+ra);
182  G4double ecsq = ec * ec;
183  G4double p = p0 + p1/ec + p2/ecsq;
184  G4double landa = landa0*ResidualA + landa1;
185  G4double a = g4pow->powZ(ResidualA,mu1);
186  G4double mu = mm0 * a;
187  G4double nu = a* (nu0+nu1*ec+nu2*ecsq);
188  G4double xnulam = nu / landa;
189  G4double etest = 0.0;
190  if (xnulam > spill) { xnulam=0.; }
191  else if (xnulam >= flow) { etest = 1.2 *std::sqrt(xnulam); }
192 
193  a = -2.*p*ec + landa - nu/ecsq;
194  G4double b = p*ecsq + mu + 2.*nu/ec;
195  G4double ecut = 0.;
196  G4double cut = a*a - 4.*p*b;
197  if (cut > 0.) { ecut = std::sqrt(cut); }
198  ecut = (ecut-a) / (2*p);
199 
200  //JMQ 290310 for avoiding unphysical increase below minimum (at ecut)
201  //ecut<0 means that there is no cut with energy axis, i.e. xs is set
202  //to 0 bellow minimum
203 
204  G4double elab = K * FragmentA / G4double(ResidualA);
205  G4double sig = 0.;
206 
207  if (elab <= ec) {
208  if (elab > ecut) { sig = std::max(0.0,(p*elab*elab+a*elab+b) * signor); }
209 
210  } else {
211  sig = (landa*elab+mu+nu/elab) * signor;
212  G4double geom = 0.;
213  if (xnulam >= flow && elab >= etest) {
214  geom = std::sqrt(theA*K);
215  geom = 1.23*ResidualAthrd + ra + 4.573/geom;
216  geom = 31.416 * geom * geom;
217  }
218  sig = std::max(geom,sig);
219  }
220  return sig;
221 }
static const double MeV
Definition: G4SIunits.hh:193
virtual G4double CrossSection(G4double ekin)
G4double ResidualA13() const
G4int GetA() const
const G4double nu1
G4double GetOpt34(G4double K)
G4double a
Definition: TRTMaterials.hh:39
G4double GetOpt0(G4double ekin)
int G4int
Definition: G4Types.hh:78
const G4double mm0
G4double Z13(G4int Z) const
Definition: G4Pow.hh:127
const G4double landa1
const G4double nu0
const G4double p2
const G4double p1
G4int GetRestZ() const
G4double GetOpt12(G4double K)
static const G4double A[nN]
const G4double mu1
const G4double p0
T max(const T t1, const T t2)
brief Return the largest of the two arguments
const G4double nu2
G4int GetRestA() const
G4int GetZ() const
G4double powZ(G4int Z, G4double y) const
Definition: G4Pow.hh:256
double G4double
Definition: G4Types.hh:76
const G4double landa0
virtual G4double GetRj(G4int NumberParticles, G4int NumberCharged)
virtual G4double CoalescenceFactor(G4int A)
virtual G4double FactorialFactor(G4int N, G4int P)